BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 18191280)

  • 1. Plant nutrient-acquisition strategies change with soil age.
    Lambers H; Raven JA; Shaver GR; Smith SE
    Trends Ecol Evol; 2008 Feb; 23(2):95-103. PubMed ID: 18191280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant adaptations to severely phosphorus-impoverished soils.
    Lambers H; Martinoia E; Renton M
    Curr Opin Plant Biol; 2015 Jun; 25():23-31. PubMed ID: 25912783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?
    Teste FP; Veneklaas EJ; Dixon KW; Lambers H
    Plant Cell Environ; 2015 Jan; 38(1):50-60. PubMed ID: 24811370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus nutrition of mycorrhizal trees.
    Plassard C; Dell B
    Tree Physiol; 2010 Sep; 30(9):1129-39. PubMed ID: 20631011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types.
    Oliveira RS; Galvão HC; de Campos MCR; Eller CB; Pearse SJ; Lambers H
    New Phytol; 2015 Feb; 205(3):1183-1194. PubMed ID: 25425486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycorrhizal respiration: implications for global scaling relationships.
    Hughes JK; Hodge A; Fitter AH; Atkin OK
    Trends Plant Sci; 2008 Nov; 13(11):583-8. PubMed ID: 18829377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability.
    Torres Aquino M; Plassard C
    FEMS Microbiol Ecol; 2004 May; 48(2):149-56. PubMed ID: 19712398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil.
    Dong Y; Zhu YG; Smith FA; Wang Y; Chen B
    Environ Pollut; 2008 Sep; 155(1):174-81. PubMed ID: 18060670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils.
    Leung HM; Ye ZH; Wong MH
    Environ Pollut; 2006 Jan; 139(1):1-8. PubMed ID: 16039023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae).
    Lambers H; Clements JC; Nelson MN
    Am J Bot; 2013 Feb; 100(2):263-88. PubMed ID: 23347972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The modelled growth of mycorrhizal and non-mycorrhizal plants under constant versus variable soil nutrient concentration.
    Aikio S; Ruotsalainen AL
    Mycorrhiza; 2002 Oct; 12(5):257-61. PubMed ID: 12375137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen- vs. phosphorus-based dairy manure applications to field crops: nitrate and phosphorus leaching and soil phosphorus accumulation.
    Toth JD; Dou Z; Ferguson JD; Galligan DT; Ramberg CF
    J Environ Qual; 2006; 35(6):2302-12. PubMed ID: 17071901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil.
    Zhu YG; Smith FA; Smith SE
    Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.
    Robertson SJ; McGill WB; Massicotte HB; Rutherford PM
    Biol Rev Camb Philos Soc; 2007 May; 82(2):213-40. PubMed ID: 17437558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content.
    Eschen R; Hunt S; Mykura C; Gange AC; Sutton BC
    Fungal Biol; 2010; 114(11-12):991-8. PubMed ID: 21036343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating long-term nitrogen- versus phosphorus-based nutrient management of poultry litter.
    Maguire RO; Mullins GL; Brosius M
    J Environ Qual; 2008; 37(5):1810-6. PubMed ID: 18689742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant phosphorus-use and -acquisition strategies in Amazonia.
    Reichert T; Rammig A; Fuchslueger L; Lugli LF; Quesada CA; Fleischer K
    New Phytol; 2022 May; 234(4):1126-1143. PubMed ID: 35060130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and survival of seedlings of native plants in an impoverished and highly disturbed soil following inoculation with arbuscular mycorrhizal fungi.
    Pattinson GS; Hammill KA; Sutton BG; McGee PA
    Mycorrhiza; 2004 Dec; 14(6):339-46. PubMed ID: 14655039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime.
    Hu J; Lin X; Wang J; Cui X; Dai J; Chu H; Zhang J
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):781-7. PubMed ID: 20683717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.
    van der Heijden MG; Bardgett RD; van Straalen NM
    Ecol Lett; 2008 Mar; 11(3):296-310. PubMed ID: 18047587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.