These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 18191280)

  • 41. Phosphorus nutrition of phosphorus-sensitive Australian native plants: threats to plant communities in a global biodiversity hotspot.
    Lambers H; Ahmedi I; Berkowitz O; Dunne C; Finnegan PM; Hardy GE; Jost R; Laliberté E; Pearse SJ; Teste FP
    Conserv Physiol; 2013; 1(1):cot010. PubMed ID: 27293594
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology.
    Hempel S; Götzenberger L; Kühn I; Michalski SG; Rillig MC; Zobel M; Moora M
    Ecology; 2013 Jun; 94(6):1389-99. PubMed ID: 23923502
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Does cluster-root activity benefit nutrient uptake and growth of co-existing species?
    Muler AL; Oliveira RS; Lambers H; Veneklaas EJ
    Oecologia; 2014 Jan; 174(1):23-31. PubMed ID: 23934064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cluster root-bearing Proteaceae species show a competitive advantage over non-cluster root-bearing species.
    Fajardo A; Piper FI
    Ann Bot; 2019 Nov; 124(6):1121-1131. PubMed ID: 31332426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus leaching from riparian soils with differing management histories under three grass species.
    Roberts WM; George TS; Stutter MI; Louro A; Ali M; Haygarth PM
    J Environ Qual; 2020 Jan; 49(1):74-84. PubMed ID: 33016354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphorus acquisition by citrate- and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling.
    Giles CD; Richardson AE; Cade-Menun BJ; Mezeli MM; Brown LK; Menezes-Blackburn D; Darch T; Blackwell MS; Shand CA; Stutter MI; Wendler R; Cooper P; Lumsdon DG; Wearing C; Zhang H; Haygarth PM; George TS
    Physiol Plant; 2018 Mar; ():. PubMed ID: 29498417
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorus- and nitrogen-acquisition strategies in two Bossiaea species (Fabaceae) along retrogressive soil chronosequences in south-western Australia.
    Abrahão A; Ryan MH; Laliberté E; Oliveira RS; Lambers H
    Physiol Plant; 2018 Feb; ():. PubMed ID: 29418005
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Testate amoebae and nutrient cycling: peering into the black box of soil ecology.
    Wilkinson DM
    Trends Ecol Evol; 2008 Nov; 23(11):596-9. PubMed ID: 18824273
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus-impoverished habitat.
    Prodhan MA; Jost R; Watanabe M; Hoefgen R; Lambers H; Finnegan PM
    New Phytol; 2017 Aug; 215(3):1068-1079. PubMed ID: 28656667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How Does Evolution in Phosphorus-Impoverished Landscapes Impact Plant Nitrogen and Sulfur Assimilation?
    Prodhan MA; Finnegan PM; Lambers H
    Trends Plant Sci; 2019 Jan; 24(1):69-82. PubMed ID: 30522809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorus nutrition in Proteaceae and beyond.
    Lambers H; Finnegan PM; Jost R; Plaxton WC; Shane MW; Stitt M
    Nat Plants; 2015 Aug; 1():15109. PubMed ID: 27250542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphorus Acquisition and Utilization in Plants.
    Lambers H
    Annu Rev Plant Biol; 2022 May; 73():17-42. PubMed ID: 34910587
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils.
    White JF; Chen Q; Torres MS; Mattera R; Irizarry I; Tadych M; Bergen M
    AoB Plants; 2015 Jan; 7():. PubMed ID: 25564515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcicole-calcifuge plant strategies limit restoration potential in a regional semi-arid flora.
    Cross AT; Lambers H
    Ecol Evol; 2021 Jun; 11(11):6941-6961. PubMed ID: 34141267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphodiesters as mycorrhizal P sources: II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon.
    Myers MD; Leake JR
    New Phytol; 1996 Mar; 132(3):445-51. PubMed ID: 26763640
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Update on Nitric Oxide Production and Role Under Phosphorus Scarcity in Plants.
    Galatro A; Ramos-Artuso F; Luquet M; Buet A; Simontacchi M
    Front Plant Sci; 2020; 11():413. PubMed ID: 32351528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alastair H. Fitter.
    New Phytol; 2018 Dec; 220(4):977-978. PubMed ID: 30408220
    [No Abstract]   [Full Text] [Related]  

  • 58. The influence of seabird manuring on the phosphorus status of Marion Island (Subantarctic) soils.
    Smith VR
    Oecologia; 1979 Jul; 41(1):123-126. PubMed ID: 28310365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rice Varieties Intercropping Induced Soil Metabolic and Microbial Recruiting to Enhance the Rice Blast (
    Zhu XQ; Li M; Li RP; Tang WQ; Wang YY; Fei X; He P; Han GY
    Metabolites; 2024 Sep; 14(9):. PubMed ID: 39330514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-Term Straw Returning Enhances Phosphorus Uptake by
    Tang X; Zhou Y; Wu R; Wu K; Zhao H; Wang W; Zhang Y; Huang R; Wu Y; Li B; Wang C
    Plants (Basel); 2024 Aug; 13(17):. PubMed ID: 39273874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.