BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18191379)

  • 1. Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW; Fu M
    J Voice; 2009 May; 23(3):277-82. PubMed ID: 18191379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
    Chan RW; Siegmund T; Zhang K
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):181-9. PubMed ID: 19415568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the transient responses of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):93-104. PubMed ID: 19122858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A constitutive model of the human vocal fold cover for fundamental frequency regulation.
    Zhang K; Siegmund T; Chan RW
    J Acoust Soc Am; 2006 Feb; 119(2):1050-62. PubMed ID: 16521767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study.
    Kelleher JE; Siegmund T; Du M; Naseri E; Chan RW
    J Acoust Soc Am; 2013 Mar; 133(3):1625-36. PubMed ID: 23464032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-layer composite model of the vocal fold lamina propria for fundamental frequency regulation.
    Zhang K; Siegmund T; Chan RW
    J Acoust Soc Am; 2007 Aug; 122(2):1090-101. PubMed ID: 17672656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal fold dynamics for frequency change.
    Hollien H
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria.
    Kelleher JE; Siegmund T; Du M; Naseri E; Chan RW
    Biomech Model Mechanobiol; 2013 Jun; 12(3):555-67. PubMed ID: 22886592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational dynamics of vocal folds using nonlinear normal modes.
    Pinheiro AP; Kerschen G
    Med Eng Phys; 2013 Aug; 35(8):1079-88. PubMed ID: 23218815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL; Achuthan A; Erath BD
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical measurements of vocal fold tensile properties: implications for phonatory mechanics.
    Kelleher JE; Siegmund T; Chan RW; Henslee EA
    J Biomech; 2011 Jun; 44(9):1729-34. PubMed ID: 21497355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural constitutive modeling of the anisotropic mechanical properties of human vocal fold lamina propria.
    Zhang Z
    J Acoust Soc Am; 2019 Jun; 145(6):EL476. PubMed ID: 31255149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency response of synthetic vocal fold models with linear and nonlinear material properties.
    Shaw SM; Thomson SL; Dromey C; Smith S
    J Speech Lang Hear Res; 2012 Oct; 55(5):1395-406. PubMed ID: 22271874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.