BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 18191444)

  • 1. Regulation of tissue factor procoagulant activity by post-translational modifications.
    Egorina EM; Sovershaev MA; Osterud B
    Thromb Res; 2008; 122(6):831-7. PubMed ID: 18191444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranslational modifications of tissue factor.
    Butenas S; Amblo-Krudysz J; Mann KG
    Front Biosci (Elite Ed); 2012 Jan; 4(1):381-91. PubMed ID: 22201880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue factor activity and function in blood coagulation.
    Butenas S; Orfeo T; Mann KG
    Thromb Res; 2008; 122 Suppl 1():S42-6. PubMed ID: 18691499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-translational modifications influence transcription factor activity: a view from the ETS superfamily.
    Tootle TL; Rebay I
    Bioessays; 2005 Mar; 27(3):285-98. PubMed ID: 15714552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation and glycosylation interplay: protein modifications at hydroxy amino acids and prediction of signaling functions of the human beta3 integrin family.
    Ahmad I; Hoessli DC; Walker-Nasir E; Choudhary MI; Rafik SM; Shakoori AR;
    J Cell Biochem; 2006 Oct; 99(3):706-18. PubMed ID: 16676352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of post-translational modifications for learning and memory formation.
    Sunyer B; Diao W; Lubec G
    Electrophoresis; 2008 Jun; 29(12):2593-602. PubMed ID: 18494028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational modifications required for coagulation factor secretion and function.
    Kaufman RJ
    Thromb Haemost; 1998 Jun; 79(6):1068-79. PubMed ID: 9657426
    [No Abstract]   [Full Text] [Related]  

  • 8. Post-translational modifications of mitochondrial outer membrane proteins.
    Distler AM; Kerner J; Lee K; Hoppel CL
    Methods Enzymol; 2009; 457():97-115. PubMed ID: 19426864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: implications for biological function.
    Ahmad I; Hoessli DC; Gupta R; Walker-Nasir E; Rafik SM; Choudhary MI; Shakoori AR;
    J Cell Biochem; 2007 Apr; 100(6):1558-72. PubMed ID: 17230456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-phosphorylation.
    Lane P; Hao G; Gross SS
    Sci STKE; 2001 Jun; 2001(86):re1. PubMed ID: 11752656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels.
    Huber SC; Hardin SC
    Curr Opin Plant Biol; 2004 Jun; 7(3):318-22. PubMed ID: 15134753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational modifications of proteins: acetylcholinesterase as a model system.
    Nalivaeva NN; Turner AJ
    Proteomics; 2001 Jun; 1(6):735-47. PubMed ID: 11677779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How post-translational modifications influence amyloid formation: a systematic study of phosphorylation and glycosylation in model peptides.
    Broncel M; Falenski JA; Wagner SC; Hackenberger CP; Koksch B
    Chemistry; 2010 Jul; 16(26):7881-8. PubMed ID: 20491120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MAPRes: Mining association patterns among preferred amino acid residues in the vicinity of amino acids targeted for post-translational modifications.
    Ahmad I; Qazi WM; Khurshid A; Ahmad M; Hoessli DC; Khawaja I; Choudhary MI; Shakoori AR;
    Proteomics; 2008 May; 8(10):1954-8. PubMed ID: 18491291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MAPRes: an efficient method to analyze protein sequence around post-translational modification sites.
    Ahmad I; Hoessli DC; Qazi WM; Khurshid A; Mehmood A; Walker-Nasir E; Ahmad M; Shakoori AR;
    J Cell Biochem; 2008 Jul; 104(4):1220-31. PubMed ID: 18286469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The death of transcriptional chauvinism in the control and regulation of cardiac contractility.
    Sadayappan S; Robbins J
    Ann N Y Acad Sci; 2008 Mar; 1123():1-9. PubMed ID: 18375572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of SRC family coactivators by post-translational modifications.
    Li S; Shang Y
    Cell Signal; 2007 Jun; 19(6):1101-12. PubMed ID: 17368849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear flow increases S-nitrosylation of proteins in endothelial cells.
    Huang B; Chen SC; Wang DL
    Cardiovasc Res; 2009 Aug; 83(3):536-46. PubMed ID: 19447776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palmitoylation of serotonin receptors.
    Gorinski N; Ponimaskin E
    Biochem Soc Trans; 2013 Feb; 41(1):89-94. PubMed ID: 23356264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences.
    Martínez-Ruiz A; Lamas S
    Cardiovasc Res; 2007 Jul; 75(2):220-8. PubMed ID: 17451659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.