BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18191837)

  • 1. Immune activation is required for NT-3-induced axonal plasticity in chronic spinal cord injury.
    Chen Q; Smith GM; Shine HD
    Exp Neurol; 2008 Feb; 209(2):497-509. PubMed ID: 18191837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of neurotrophin-3 promotes axonal plasticity in the acute but not chronic injured spinal cord.
    Chen Q; Zhou L; Shine HD
    J Neurotrauma; 2006 Aug; 23(8):1254-60. PubMed ID: 16928183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.
    Chen Q; Shine HD
    J Neurosci Res; 2013 Oct; 91(10):1280-91. PubMed ID: 23907999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord.
    Zhou L; Baumgartner BJ; Hill-Felberg SJ; McGowen LR; Shine HD
    J Neurosci; 2003 Feb; 23(4):1424-31. PubMed ID: 12598631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.
    Tobias CA; Shumsky JS; Shibata M; Tuszynski MH; Fischer I; Tessler A; Murray M
    Exp Neurol; 2003 Nov; 184(1):97-113. PubMed ID: 14637084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats.
    Hagg T; Baker KA; Emsley JG; Tetzlaff W
    Neuroscience; 2005; 130(4):875-87. PubMed ID: 15652986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondroitinase ABC combined with neurotrophin NT-3 secretion and NR2D expression promotes axonal plasticity and functional recovery in rats with lateral hemisection of the spinal cord.
    García-Alías G; Petrosyan HA; Schnell L; Horner PJ; Bowers WJ; Mendell LM; Fawcett JW; Arvanian VL
    J Neurosci; 2011 Dec; 31(49):17788-99. PubMed ID: 22159095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function.
    Blits B; Dijkhuizen PA; Boer GJ; Verhaagen J
    Exp Neurol; 2000 Jul; 164(1):25-37. PubMed ID: 10877912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats.
    Hunanyan AS; Petrosyan HA; Alessi V; Arvanian VL
    J Neurophysiol; 2013 Oct; 110(8):1782-92. PubMed ID: 23864374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration.
    Ruitenberg MJ; Levison DB; Lee SV; Verhaagen J; Harvey AR; Plant GW
    Brain; 2005 Apr; 128(Pt 4):839-53. PubMed ID: 15716305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI.
    Fortun J; Puzis R; Pearse DD; Gage FH; Bunge MB
    J Neurotrauma; 2009 Jul; 26(7):941-53. PubMed ID: 19275471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury.
    Weishaupt N; Li S; Di Pardo A; Sipione S; Fouad K
    Behav Brain Res; 2013 Feb; 239():31-42. PubMed ID: 23131414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal electro-magnetic stimulation combined with transgene delivery of neurotrophin NT-3 and exercise: novel combination therapy for spinal contusion injury.
    Petrosyan HA; Alessi V; Hunanyan AS; Sisto SA; Arvanian VL
    J Neurophysiol; 2015 Nov; 114(5):2923-40. PubMed ID: 26424579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of mesenchymal stem cells that overexpress NT-3 produce motor improvements without axonal regeneration following complete spinal cord transections in rats.
    Stewart AN; Kendziorski G; Deak ZM; Bartosek NC; Rezmer BE; Jenrow K; Rossignol J; Dunbar GL
    Brain Res; 2018 Nov; 1699():19-33. PubMed ID: 29883625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery.
    Wang Y; Wu W; Wu X; Sun Y; Zhang YP; Deng LX; Walker MJ; Qu W; Chen C; Liu NK; Han Q; Dai H; Shields LB; Shields CB; Sengelaub DR; Jones KJ; Smith GM; Xu XM
    Elife; 2018 Sep; 7():. PubMed ID: 30207538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.