These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18191980)

  • 41. Expression of Ext1, Ext2, and heparanase genes in brain of senescence-accelerated OXYS rats in early ontogenesis and during development of neurodegenerative changes.
    Shevelev OB; Rykova VI; Fedoseeva LA; Leberfarb EY; Dymshits GM; Kolosova NG
    Biochemistry (Mosc); 2012 Jan; 77(1):56-61. PubMed ID: 22339633
    [TBL] [Abstract][Full Text] [Related]  

  • 42. QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling.
    Ai X; Do AT; Lozynska O; Kusche-Gullberg M; Lindahl U; Emerson CP
    J Cell Biol; 2003 Jul; 162(2):341-51. PubMed ID: 12860968
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool.
    Hershkovitz O; Jarahian M; Zilka A; Bar-Ilan A; Landau G; Jivov S; Tekoah Y; Glicklis R; Gallagher JT; Hoffmann SC; Zer H; Mandelboim O; Watzl C; Momburg F; Porgador A
    Glycobiology; 2008 Jan; 18(1):28-41. PubMed ID: 18006589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Latent Macrophage and Immature B Cell Lines Generated with Hygromycin-Resistant Murine Gammaherpesvirus 68 Genome Expresses Modest Levels of Viral miRNAs].
    Kara M
    Mol Biol (Mosk); 2024; 58(1):154-156. PubMed ID: 38943586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of major histocompatibility complex class I C molecule as an attachment factor that facilitates coronavirus HKU1 spike-mediated infection.
    Chan CM; Lau SK; Woo PC; Tse H; Zheng BJ; Chen L; Huang JD; Yuen KY
    J Virol; 2009 Jan; 83(2):1026-35. PubMed ID: 18987136
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity.
    Christianson HC; Svensson KJ; van Kuppevelt TH; Li JP; Belting M
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17380-5. PubMed ID: 24101524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome.
    Götte M; Spillmann D; Yip GW; Versteeg E; Echtermeyer FG; van Kuppevelt TH; Kiesel L
    Hum Mol Genet; 2008 Apr; 17(7):996-1009. PubMed ID: 18158310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of cytoplasmic deletions on the filopodia-inducing effect of syndecan-3.
    Berndt C; Montañez E; Villena J; Fabre M; Vilaró S; Reina M
    Cell Biol Int; 2004; 28(11):829-33. PubMed ID: 15563406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis.
    Nakase I; Tadokoro A; Kawabata N; Takeuchi T; Katoh H; Hiramoto K; Negishi M; Nomizu M; Sugiura Y; Futaki S
    Biochemistry; 2007 Jan; 46(2):492-501. PubMed ID: 17209559
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The role of syndecans in lymphoid systems].
    Sebestyén A; Kopper L
    Magy Onkol; 2001; 45(1):67-74. PubMed ID: 12050731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis.
    Coulson-Thomas VJ; Gesteira TF; Esko J; Kao W
    J Biol Chem; 2014 Sep; 289(36):25211-26. PubMed ID: 25053416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Copper-dependent co-internalization of the prion protein and glypican-1.
    Cheng F; Lindqvist J; Haigh CL; Brown DR; Mani K
    J Neurochem; 2006 Sep; 98(5):1445-57. PubMed ID: 16923158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heparan sulfate proteoglycans mediate Staphylococcus aureus interactions with intestinal epithelium.
    Hess DJ; Henry-Stanley MJ; Erlandsen SL; Wells CL
    Med Microbiol Immunol; 2006 Sep; 195(3):133-41. PubMed ID: 16378213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An important role for syndecan-1 in herpes simplex virus type-1 induced cell-to-cell fusion and virus spread.
    Karasneh GA; Ali M; Shukla D
    PLoS One; 2011; 6(9):e25252. PubMed ID: 21957484
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nerve injury induces the expression of EXT2, a glycosyltransferase required for heparan sulfate synthesis.
    Murakami K; Namikawa K; Shimizu T; Shirasawa T; Yoshida S; Kiyama H
    Neuroscience; 2006 Sep; 141(4):1961-9. PubMed ID: 16784821
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies of proteoglycan involvement in CPP-mediated delivery.
    Wittrup A; Zhang SH; Belting M
    Methods Mol Biol; 2011; 683():99-115. PubMed ID: 21053125
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heparan sulfate mediates infection of high-neurovirulence Theiler's viruses.
    Reddi HV; Lipton HL
    J Virol; 2002 Aug; 76(16):8400-7. PubMed ID: 12134043
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.
    Lattenmayer C; Loeschel M; Schriebl K; Steinfellner W; Sterovsky T; Trummer E; Vorauer-Uhl K; Müller D; Katinger H; Kunert R
    Biotechnol Bioeng; 2007 Apr; 96(6):1118-26. PubMed ID: 17004273
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections.
    Surviladze Z; Dziduszko A; Ozbun MA
    PLoS Pathog; 2012 Feb; 8(2):e1002519. PubMed ID: 22346752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single chain fragment anti-heparan sulfate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation.
    Welch JE; Bengtson P; Svensson K; Wittrup A; Jenniskens GJ; Ten Dam GB; Van Kuppevelt TH; Belting M
    Int J Oncol; 2008 Apr; 32(4):749-56. PubMed ID: 18360702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.