BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18192022)

  • 1. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy.
    Davalos D; Lee JK; Smith WB; Brinkman B; Ellisman MH; Zheng B; Akassoglou K
    J Neurosci Methods; 2008 Mar; 169(1):1-7. PubMed ID: 18192022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of the mouse spinal column for repetitive imaging using two-photon laser-scanning microscopy.
    Steffens H; Nadrigny F; Kirchhoff F
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of the mouse spinal column for single imaging using two-photon laser-scanning microscopy.
    Steffens H; Nadrigny F; Kirchhoff F
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo two-photon imaging of neurons and glia in the mouse spinal cord.
    Steffens H; Nadrigny F; Kirchhoff F
    Cold Spring Harb Protoc; 2012 Dec; 2012(12):. PubMed ID: 23209139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo imaging of the mouse spinal cord using two-photon microscopy.
    Davalos D; Akassoglou K
    J Vis Exp; 2012 Jan; (59):e2760. PubMed ID: 22258623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo imaging of single axons in the mouse spinal cord.
    Misgeld T; Nikic I; Kerschensteiner M
    Nat Protoc; 2007; 2(2):263-8. PubMed ID: 17406584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.
    Stirling DP; Cummins K; Mishra M; Teo W; Yong VW; Stys P
    Brain; 2014 Mar; 137(Pt 3):707-23. PubMed ID: 24369381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model.
    Zhang Y; Zhang L; Shen J; Chen C; Mao Z; Li W; Gan WB; Tang P
    Spine (Phila Pa 1976); 2014 Apr; 39(8):E493-9. PubMed ID: 24480947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging green fluorescent protein-labeled neurons using light and electron microscopy.
    Knott GW
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):542-50. PubMed ID: 23734023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E. Coli bacteremia-induced changes in the skeletal muscle microcirculation vary with anesthetics.
    Lüebbe AS; Harris PD; Garrison RN
    Croat Med J; 1998 Dec; 39(4):392-400. PubMed ID: 9841938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chapter 11: Imaging fluorescent mice in vivo using confocal microscopy.
    Turney SG; Lichtman JW
    Methods Cell Biol; 2008; 89():309-27. PubMed ID: 19118680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NO mediates microglial response to acute spinal cord injury under ATP control in vivo.
    Dibaj P; Nadrigny F; Steffens H; Scheller A; Hirrlinger J; Schomburg ED; Neusch C; Kirchhoff F
    Glia; 2010 Jul; 58(9):1133-44. PubMed ID: 20468054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon laser-scanning microscopy for single and repetitive imaging of dorsal and lateral spinal white matter in vivo.
    Nadrigny F; Le Meur K; Schomburg ED; Safavi-Abbasi S; Dibaj P
    Physiol Res; 2017 Jul; 66(3):531-537. PubMed ID: 28248542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-lasting post-mortem activity of spinal microglia in situ in mice.
    Dibaj P; Steffens H; Nadrigny F; Neusch C; Kirchhoff F; Schomburg ED
    J Neurosci Res; 2010 Aug; 88(11):2431-40. PubMed ID: 20623536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-lapse in vivo imaging of dorsal root nerve regeneration in mice.
    Skuba A; Manire MA; Kim H; Han SB; Son YJ
    Methods Mol Biol; 2014; 1162():219-32. PubMed ID: 24838971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axon regeneration after spinal cord injury: insight from genetically modified mouse models.
    Lee JK; Zheng B
    Restor Neurol Neurosci; 2008; 26(2-3):175-82. PubMed ID: 18820409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo time-lapse fluorescence imaging of individual retinal ganglion cells in mice.
    Walsh MK; Quigley HA
    J Neurosci Methods; 2008 Mar; 169(1):214-21. PubMed ID: 18199485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo imaging of the developing neuromuscular junction in neonatal mice.
    Turney SG; Walsh MK; Lichtman JW
    Cold Spring Harb Protoc; 2012 Nov; 2012(11):1166-76. PubMed ID: 23118362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Injured Axons Using Two-Photon Excited Fluorescence Microscopy after Spinal Cord Contusion Injury in YFP-H Line Mice.
    Horiuchi H; Oshima Y; Ogata T; Morino T; Matsuda S; Miura H; Imamura T
    Int J Mol Sci; 2015 Jul; 16(7):15785-99. PubMed ID: 26184175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.