These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 18192023)

  • 1. Recursive trace line method for detecting myelinated bundles: a comparison study with pyramidal cell arrays.
    Casanova MF; Konkachbaev AI; Switala AE; Elmaghraby AS
    J Neurosci Methods; 2008 Mar; 168(2):367-72. PubMed ID: 18192023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some thoughts on cortical minicolumns.
    Rockland KS; Ichinohe N
    Exp Brain Res; 2004 Oct; 158(3):265-77. PubMed ID: 15365664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minicolumnar abnormalities in autism.
    Casanova MF; van Kooten IA; Switala AE; van Engeland H; Heinsen H; Steinbusch HW; Hof PR; Trippe J; Stone J; Schmitz C
    Acta Neuropathol; 2006 Sep; 112(3):287-303. PubMed ID: 16819561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A topographic study of minicolumnar core width by lamina comparison between autistic subjects and controls: possible minicolumnar disruption due to an anatomical element in-common to multiple laminae.
    Casanova MF; El-Baz A; Vanbogaert E; Narahari P; Switala A
    Brain Pathol; 2010 Mar; 20(2):451-8. PubMed ID: 19725830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minicolumnar width: Comparison between supragranular and infragranular layers.
    Casanova MF; El-Baz A; Vanbogaert E; Narahari P; Trippe J
    J Neurosci Methods; 2009 Oct; 184(1):19-24. PubMed ID: 19616026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wider minicolumns in autism: a neural basis for altered processing?
    McKavanagh R; Buckley E; Chance SA
    Brain; 2015 Jul; 138(Pt 7):2034-45. PubMed ID: 25935724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison study of the vertical bias of pyramidal cells in the hippocampus and neocortex.
    Casanova MF; Switala AE; Trippe J
    Dev Neurosci; 2007; 29(1-2):193-200. PubMed ID: 17148961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents.
    Durrleman S; Fillard P; Pennec X; Trouvé A; Ayache N
    Neuroimage; 2011 Apr; 55(3):1073-90. PubMed ID: 21126594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The large numbers of minicolumns in the primary visual cortex of humans, chimpanzees and gorillas are related to high visual acuity.
    Wallace MN; Zobay O; Hardman E; Thompson Z; Dobbs P; Chakrabarti L; Palmer AR
    Front Neuroanat; 2022; 16():1034264. PubMed ID: 36439196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal development of CA3 pyramidal neurons and their afferents in the Ammon's horn of rhesus monkeys.
    Seress L; Ribak CE
    Hippocampus; 1995; 5(3):217-31. PubMed ID: 7550617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data.
    Nieuwenhuys R
    Brain Struct Funct; 2013 Mar; 218(2):303-52. PubMed ID: 23076375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of nerve fibers using multi-level gradient watershed and fuzzy systems.
    Wang YY; Sun YN; Lin CC; Ju MS
    Artif Intell Med; 2012 Mar; 54(3):189-200. PubMed ID: 22239996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structural organization of layer I of the human cerebral cortex: a Golgi study.
    Marín-Padilla M
    J Comp Neurol; 1990 Sep; 299(1):89-105. PubMed ID: 2212113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the early organization and maturation of infants' cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography.
    Dubois J; Hertz-Pannier L; Dehaene-Lambertz G; Cointepas Y; Le Bihan D
    Neuroimage; 2006 May; 30(4):1121-32. PubMed ID: 16413790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the myelin picture of the human cerebral cortex can be computed from cytoarchitectural data. A bridge between von Economo and Vogt.
    Hellwig B
    J Hirnforsch; 1993; 34(3):387-402. PubMed ID: 8270790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphometric analysis of early regeneration of motor axons through motor and cutaneous nerve grafts.
    Ghalib N; Houst'ava L; Haninec P; Dubový P
    Ann Anat; 2001 Jul; 183(4):363-8. PubMed ID: 11508363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An image analysis morphometric method for the study of myelinated nerve fibers from mouse trigeminal root.
    Savy C; Margules S; Solari A; Saint-Jean P; Farkas-Bargeton E
    Anal Quant Cytol Histol; 1988 Oct; 10(5):307-16. PubMed ID: 3207455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphometric analyses of axons in the human lateral corticospinal tract: cervical/lumbar level comparison and relation to the ageing process.
    Nakanishi R; Goto J; Ezure H; Motoura H; Ayabe S; Atsumi T
    Okajimas Folia Anat Jpn; 2004 May; 81(1):1-4. PubMed ID: 15248559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myelinated and unmyelinated endoneurial axon quantitation and clinical correlation.
    Dori A; Lopate G; Choksi R; Pestronk A
    Muscle Nerve; 2016 Feb; 53(2):198-204. PubMed ID: 26080797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes.
    Casanova MF; Trippe J; Tillquist C; Switala AE
    J Anat; 2009 Feb; 214(2):226-34. PubMed ID: 19207984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.