These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18192286)

  • 1. KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome.
    Lyons DA; Naylor SG; Mercurio S; Dominguez C; Talbot WS
    Development; 2008 Feb; 135(3):599-608. PubMed ID: 18192286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KBP interacts with SCG10, linking Goldberg-Shprintzen syndrome to microtubule dynamics and neuronal differentiation.
    Alves MM; Burzynski G; Delalande JM; Osinga J; van der Goot A; Dolga AM; de Graaff E; Brooks AS; Metzger M; Eisel UL; Shepherd I; Eggen BJ; Hofstra RM
    Hum Mol Genet; 2010 Sep; 19(18):3642-51. PubMed ID: 20621975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kif1B Interacts with KBP to Promote Axon Elongation by Localizing a Microtubule Regulator to Growth Cones.
    Drerup CM; Lusk S; Nechiporuk A
    J Neurosci; 2016 Jun; 36(26):7014-26. PubMed ID: 27358458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.
    Kevenaar JT; Bianchi S; van Spronsen M; Olieric N; Lipka J; Frias CP; Mikhaylova M; Harterink M; Keijzer N; Wulf PS; Hilbert M; Kapitein LC; de Graaff E; Ahkmanova A; Steinmetz MO; Hoogenraad CC
    Curr Biol; 2016 Apr; 26(7):849-61. PubMed ID: 26948876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple Functions of KBP in Neural Development Underlie Brain Anomalies in Goldberg-Shprintzen Syndrome.
    Chang HY; Cheng HY; Tsao AN; Liu C; Tsai JW
    Front Mol Neurosci; 2019; 12():265. PubMed ID: 31736709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo.
    Wood JD; Landers JA; Bingley M; McDermott CJ; Thomas-McArthur V; Gleadall LJ; Shaw PJ; Cunliffe VT
    Hum Mol Genet; 2006 Sep; 15(18):2763-71. PubMed ID: 16893913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KBP-cytoskeleton interactions underlie developmental anomalies in Goldberg-Shprintzen syndrome.
    Drévillon L; Megarbane A; Demeer B; Matar C; Benit P; Briand-Suleau A; Bodereau V; Ghoumid J; Nasser M; Decrouy X; Doco-Fenzy M; Rustin P; Gaillard D; Goossens M; Giurgea I
    Hum Mol Genet; 2013 Jun; 22(12):2387-99. PubMed ID: 23427148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetic screen identifies genes essential for development of myelinated axons in zebrafish.
    Pogoda HM; Sternheim N; Lyons DA; Diamond B; Hawkins TA; Woods IG; Bhatt DH; Franzini-Armstrong C; Dominguez C; Arana N; Jacobs J; Nix R; Fetcho JR; Talbot WS
    Dev Biol; 2006 Oct; 298(1):118-31. PubMed ID: 16875686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons.
    Lyons DA; Naylor SG; Scholze A; Talbot WS
    Nat Genet; 2009 Jul; 41(7):854-8. PubMed ID: 19503091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique function of Kinesin Kif5A in localization of mitochondria in axons.
    Campbell PD; Shen K; Sapio MR; Glenn TD; Talbot WS; Marlow FL
    J Neurosci; 2014 Oct; 34(44):14717-32. PubMed ID: 25355224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNS myelination requires cytoplasmic dynein function.
    Yang ML; Shin J; Kearns CA; Langworthy MM; Snell H; Walker MB; Appel B
    Dev Dyn; 2015 Feb; 244(2):134-45. PubMed ID: 25488883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Goldberg-Shprintzen megacolon syndrome with associated sensory motor axonal neuropathy.
    Dafsari HS; Byrne S; Lin JP; Pitt M; Jongbloed JD; Flinter F; Jungbluth H
    Am J Med Genet A; 2015 Jun; 167(6):1300-4. PubMed ID: 25846562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.
    Sainath R; Granato M
    PLoS One; 2013; 8(1):e54071. PubMed ID: 23349787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation of sec63 in zebrafish causes defects in myelinated axons and liver pathology.
    Monk KR; Voas MG; Franzini-Armstrong C; Hakkinen IS; Talbot WS
    Dis Model Mech; 2013 Jan; 6(1):135-45. PubMed ID: 22864019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular fingerprinting delineates progenitor populations in the developing zebrafish enteric nervous system.
    Taylor CR; Montagne WA; Eisen JS; Ganz J
    Dev Dyn; 2016 Nov; 245(11):1081-1096. PubMed ID: 27565577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centrosome movements in vivo correlate with specific neurite formation downstream of LIM homeodomain transcription factor activity.
    Andersen EF; Halloran MC
    Development; 2012 Oct; 139(19):3590-9. PubMed ID: 22899847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whirlin, a cytoskeletal scaffolding protein, stabilizes the paranodal region and axonal cytoskeleton in myelinated axons.
    Green JA; Yang J; Grati M; Kachar B; Bhat MA
    BMC Neurosci; 2013 Sep; 14():96. PubMed ID: 24011083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting mechanisms of myelinated axon formation using zebrafish.
    Czopka T; Lyons DA
    Methods Cell Biol; 2011; 105():25-62. PubMed ID: 21951525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SMN binding protein Gemin2 is not involved in motor axon outgrowth.
    McWhorter ML; Boon KL; Horan ES; Burghes AH; Beattie CE
    Dev Neurobiol; 2008 Feb; 68(2):182-94. PubMed ID: 18000835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo analysis of axonal transport in zebrafish.
    Drerup CM; Nechiporuk AV
    Methods Cell Biol; 2016; 131():311-29. PubMed ID: 26794521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.