These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18192347)

  • 21. Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A.
    Laity JH; Lester CC; Shimotakahara S; Zimmerman DE; Montelione GT; Scheraga HA
    Biochemistry; 1997 Oct; 36(42):12683-99. PubMed ID: 9335525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Hydrogen exchange and the proteolytic degradation of ribonuclease A. The position of the centers of the high-temperature splitting by proteases and the structure of denatured molecules].
    Abaturov LV; Nosova NG
    Biofizika; 2007; 52(6):978-96. PubMed ID: 18225649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature-jump NMR study of protein folding: ribonuclease A at low pH.
    Akasaka K; Naito A; Nakatani H
    J Biomol NMR; 1991 May; 1(1):65-70. PubMed ID: 1841690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature-induced dissociation of protein aggregates: accessing the denatured state.
    Meersman F; Heremans K
    Biochemistry; 2003 Dec; 42(48):14234-41. PubMed ID: 14640691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray crystallographic studies of RNase A variants engineered at the most destabilizing positions of the main hydrophobic core: further insight into protein stability.
    Kurpiewska K; Font J; Ribó M; Vilanova M; Lewiński K
    Proteins; 2009 Nov; 77(3):658-69. PubMed ID: 19544568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct evidence for the cooperative unfolding of cytochrome c in lipid membranes from H-(2)H exchange kinetics.
    Pinheiro TJ; Cheng H; Seeholzer SH; Roder H
    J Mol Biol; 2000 Nov; 303(4):617-26. PubMed ID: 11054296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in conformational dynamics of ribonucleases A and S as observed by infrared spectroscopy and hydrogen-deuterium exchange.
    Dong A; Hyslop RM; Pringle DL
    Arch Biochem Biophys; 1996 Sep; 333(1):275-81. PubMed ID: 8806781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The swapping of terminal arms in ribonucleases: comparison of the solution structure of monomeric bovine seminal and pancreatic ribonucleases.
    Avitabile F; Alfano C; Spadaccini R; Crescenzi O; D'Ursi AM; D'Alessio G; Tancredi T; Picone D
    Biochemistry; 2003 Jul; 42(29):8704-11. PubMed ID: 12873130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of arginine 67 in the stabilization of chymotrypsin inhibitor 2: examination of amide proton exchange rates and denaturation thermodynamics of an engineered protein.
    Jandu SK; Ray S; Brooks L; Leatherbarrow RJ
    Biochemistry; 1990 Jul; 29(26):6264-9. PubMed ID: 2207072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. I. Study of protein aggregation due to heat denaturation: A structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering.
    Tsai AM; van Zanten JH; Betenbaugh MJ
    Biotechnol Bioeng; 1998 Aug; 59(3):273-80. PubMed ID: 10099337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermally induced hydrogen exchange processes in small proteins as seen by FTIR spectroscopy.
    Backmann J; Schultz C; Fabian H; Hahn U; Saenger W; Naumann D
    Proteins; 1996 Mar; 24(3):379-87. PubMed ID: 8778785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B.
    Arnold U; Ulbrich-Hofmann R
    Biochemistry; 1997 Feb; 36(8):2166-72. PubMed ID: 9047316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen exchange in chymotrypsin inhibitor 2 probed by mutagenesis.
    Neira JL; Itzhaki LS; Otzen DE; Davis B; Fersht AR
    J Mol Biol; 1997 Jul; 270(1):99-110. PubMed ID: 9231904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of a tyrosine side chain to ribonuclease A catalysis and stability.
    Eberhardt ES; Wittmayer PK; Templer BM; Raines RT
    Protein Sci; 1996 Aug; 5(8):1697-703. PubMed ID: 8844858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen exchange in native and alcohol forms of ubiquitin.
    Pan Y; Briggs MS
    Biochemistry; 1992 Nov; 31(46):11405-12. PubMed ID: 1332757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping protein energy landscapes with amide hydrogen exchange and mass spectrometry: I. A generalized model for a two-state protein and comparison with experiment.
    Xiao H; Hoerner JK; Eyles SJ; Dobo A; Voigtman E; Mel'cuk AI; Kaltashov IA
    Protein Sci; 2005 Feb; 14(2):543-57. PubMed ID: 15659380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Significant stabilization of ribonuclease A by additive effects.
    Arnold U; Schöpfel M
    FEBS J; 2012 Jul; 279(14):2508-19. PubMed ID: 22594773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange.
    Houry WA; Scheraga HA
    Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes.
    Quirk DJ; Raines RT
    Biophys J; 1999 Mar; 76(3):1571-9. PubMed ID: 10049337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression, biophysical characterization, and crystallization of ribonuclease I from Escherichia coli, a broad-specificity enzyme in the RNase T2 family.
    Padmanabhan S; Zhou K; Chu CY; Lim RW; Lim LW
    Arch Biochem Biophys; 2001 Jun; 390(1):42-50. PubMed ID: 11368513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.