BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 18192387)

  • 1. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1.
    Oberhardt MA; Puchałka J; Fryer KE; Martins dos Santos VA; Papin JA
    J Bacteriol; 2008 Apr; 190(8):2790-803. PubMed ID: 18192387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network.
    Perumal D; Samal A; Sakharkar KR; Sakharkar MK
    J Drug Target; 2011 Jan; 19(1):1-13. PubMed ID: 20233082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale analysis of Mannheimia succiniciproducens metabolism.
    Kim TY; Kim HU; Park JM; Song H; Kim JS; Lee SY
    Biotechnol Bioeng; 2007 Jul; 97(4):657-71. PubMed ID: 17405177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification.
    Perumal D; Lim CS; Sakharkar KR; Sakharkar MK
    In Silico Biol; 2007; 7(4-5):453-65. PubMed ID: 18391237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas.
    Mithani A; Hein J; Preston GM
    Mol Biol Evol; 2011 Jan; 28(1):483-99. PubMed ID: 20709733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival.
    Sohn SB; Kim TY; Park JM; Lee SY
    Biotechnol J; 2010 Jul; 5(7):739-50. PubMed ID: 20540110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale modeling and in silico analysis of mouse cell metabolic network.
    Selvarasu S; Karimi IA; Ghim GH; Lee DY
    Mol Biosyst; 2010 Jan; 6(1):152-61. PubMed ID: 20024077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and application of genome-scale reconstructed metabolic models.
    Rocha I; Förster J; Nielsen J
    Methods Mol Biol; 2008; 416():409-31. PubMed ID: 18392985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SYSTOMONAS--an integrated database for systems biology analysis of Pseudomonas.
    Choi C; Münch R; Leupold S; Klein J; Siegel I; Thielen B; Benkert B; Kucklick M; Schobert M; Barthelmes J; Ebeling C; Haddad I; Scheer M; Grote A; Hiller K; Bunk B; Schreiber K; Retter I; Schomburg D; Jahn D
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D533-7. PubMed ID: 17202169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.
    Wang Q; Chen X; Yang Y; Zhao X
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE.
    Kim HU; Kim TY; Lee SY
    Mol Biosyst; 2010 Feb; 6(2):339-48. PubMed ID: 20094653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating high-throughput and computational data elucidates bacterial networks.
    Covert MW; Knight EM; Reed JL; Herrgard MJ; Palsson BO
    Nature; 2004 May; 429(6987):92-6. PubMed ID: 15129285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing Escherichia coli DH5alpha growth and metabolism in a complex medium using genome-scale flux analysis.
    Selvarasu S; Ow DS; Lee SY; Lee MM; Oh SK; Karimi IA; Lee DY
    Biotechnol Bioeng; 2009 Feb; 102(3):923-34. PubMed ID: 18853410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network.
    Heinemann M; Kümmel A; Ruinatscha R; Panke S
    Biotechnol Bioeng; 2005 Dec; 92(7):850-64. PubMed ID: 16155945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated network reconstruction, visualization and analysis using YANAsquare.
    Schwarz R; Liang C; Kaleta C; Kühnel M; Hoffmann E; Kuznetsov S; Hecker M; Griffiths G; Schuster S; Dandekar T
    BMC Bioinformatics; 2007 Aug; 8():313. PubMed ID: 17725829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes.
    Winsor GL; Van Rossum T; Lo R; Khaira B; Whiteside MD; Hancock RE; Brinkman FS
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D483-8. PubMed ID: 18978025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network.
    Kjeldsen KR; Nielsen J
    Biotechnol Bioeng; 2009 Feb; 102(2):583-97. PubMed ID: 18985611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico comparison of pKLC102-like genomic islands of Pseudomonas aeruginosa.
    Würdemann D; Tümmler B
    FEMS Microbiol Lett; 2007 Oct; 275(2):244-9. PubMed ID: 17714478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen.
    Imperi F; Ciccosanti F; Perdomo AB; Tiburzi F; Mancone C; Alonzi T; Ascenzi P; Piacentini M; Visca P; Fimia GM
    Proteomics; 2009 Apr; 9(7):1901-15. PubMed ID: 19333994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.