BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 18192388)

  • 1. Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1.
    Chou HT; Kwon DH; Hegazy M; Lu CD
    J Bacteriol; 2008 Mar; 190(6):1966-75. PubMed ID: 18192388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1.
    Lu CD; Itoh Y; Nakada Y; Jiang Y
    J Bacteriol; 2002 Jul; 184(14):3765-73. PubMed ID: 12081945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa.
    Yang Z; Lu CD
    J Bacteriol; 2007 Jun; 189(11):3945-53. PubMed ID: 17416670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative survey of putrescine production from agmatine deamination in different bacteria.
    Landete JM; Arena ME; Pardo I; Manca de Nadra MC; Ferrer S
    Food Microbiol; 2008 Oct; 25(7):882-7. PubMed ID: 18721677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of seven γ-Glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-Alanine utilization in Pseudomonas aeruginosa PAO1.
    Yao X; He W; Lu CD
    J Bacteriol; 2011 Aug; 193(15):3923-30. PubMed ID: 21622750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa.
    Li W; Lu CD
    J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of GABA in vertebrate polyamine metabolism.
    Seiler N
    Physiol Chem Phys; 1980; 12(5):411-29. PubMed ID: 6782590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator.
    Pegg AE
    Am J Physiol Endocrinol Metab; 2008 Jun; 294(6):E995-1010. PubMed ID: 18349109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12.
    Kurihara S; Kato K; Asada K; Kumagai H; Suzuki H
    J Bacteriol; 2010 Sep; 192(18):4582-91. PubMed ID: 20639325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.
    Mohapatra S; Minocha R; Long S; Minocha SC
    Amino Acids; 2010 Apr; 38(4):1117-29. PubMed ID: 19649694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of L-arginine by Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Haas D; Stalon V
    J Gen Microbiol; 1980 Feb; 116(2):381-9. PubMed ID: 6768836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica.
    Hummel I; Couée I; El Amrani A; Martin-Tanguy J; Hennion F
    J Exp Bot; 2002 Jun; 53(373):1463-73. PubMed ID: 12021294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and neurochemical effects of acute putrescine depletion by difluoromethylornithine in rats.
    Gupta N; Zhang H; Liu P
    Neuroscience; 2009 Jul; 161(3):691-706. PubMed ID: 19348875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1.
    Nakada Y; Jiang Y; Nishijyo T; Itoh Y; Lu CD
    J Bacteriol; 2001 Nov; 183(22):6517-24. PubMed ID: 11673419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aliphatic polyamines in physiology and diseases.
    Ramani D; De Bandt JP; Cynober L
    Clin Nutr; 2014 Feb; 33(1):14-22. PubMed ID: 24144912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1.
    Chou HT; Li JY; Peng YC; Lu CD
    J Bacteriol; 2013 Sep; 195(17):3906-13. PubMed ID: 23794626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of substrate binding specificity revealed by the crystal structures of polyamine receptors SpuD and SpuE from Pseudomonas aeruginosa.
    Wu D; Lim SC; Dong Y; Wu J; Tao F; Zhou L; Zhang LH; Song H
    J Mol Biol; 2012 Mar; 416(5):697-712. PubMed ID: 22300763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Escherichia coli gabDTPC operon: specific gamma-aminobutyrate catabolism and nonspecific induction.
    Schneider BL; Ruback S; Kiupakis AK; Kasbarian H; Pybus C; Reitzer L
    J Bacteriol; 2002 Dec; 184(24):6976-86. PubMed ID: 12446648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli.
    Schneider BL; Reitzer L
    J Bacteriol; 2012 Aug; 194(15):4080-8. PubMed ID: 22636776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redundancy in putrescine catabolism in solvent tolerant Pseudomonas putida S12.
    Bandounas L; Ballerstedt H; de Winde JH; Ruijssenaars HJ
    J Biotechnol; 2011 Jun; 154(1):1-10. PubMed ID: 21540064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.