BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 18192422)

  • 1. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
    Kuhn D; Fritzsch FS; Zhang X; Wendisch VF; Blank LM; Bühler B; Schmid A
    J Biotechnol; 2013 Jan; 163(2):194-203. PubMed ID: 22922011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas.
    Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1125-33. PubMed ID: 22526330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutively solvent-tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high-styrene epoxidation activities when grown under glucose excess conditions.
    Volmer J; Lindmeyer M; Seipp J; Schmid A; Bühler B
    Biotechnol Bioeng; 2019 May; 116(5):1089-1101. PubMed ID: 30636283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition.
    Julsing MK; Kuhn D; Schmid A; Bühler B
    Biotechnol Bioeng; 2012 May; 109(5):1109-19. PubMed ID: 22170310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120DeltaC.
    Park JB; Bühler B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2007 Dec; 98(6):1219-29. PubMed ID: 17514751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase.
    Panke S; Held M; Wubbolts MG; Witholt B; Schmid A
    Biotechnol Bioeng; 2002 Oct; 80(1):33-41. PubMed ID: 12209784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
    Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A
    FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint-based modeling and experimental verification.
    Blank LM; Ebert BE; Bühler B; Schmid A
    Biotechnol Bioeng; 2008 Aug; 100(6):1050-65. PubMed ID: 18553399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the two-component regulator StyS/StyR enhanced transcription of the styrene monooxygenase gene styAB and indigo biosynthesis in Escherichia coli.
    Yin S; Li Y; Hou J
    Enzyme Microb Technol; 2024 Mar; 174():110381. PubMed ID: 38134734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase.
    Panke S; Wubbolts MG; Schmid A; Witholt B
    Biotechnol Bioeng; 2000 Jul; 69(1):91-100. PubMed ID: 10820335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
    Heine T; Tucker K; Okonkwo N; Assefa B; Conrad C; Scholtissek A; Schlömann M; Gassner G; Tischler D
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1590-1610. PubMed ID: 27830466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides.
    Toda H; Imae R; Komio T; Itoh N
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):407-18. PubMed ID: 22258641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making variability less variable: matching expression system and host for oxygenase-based biotransformations.
    Lindmeyer M; Meyer D; Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):851-66. PubMed ID: 25877162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C; Zhang X; Zhu Z; Xu M; Yang T; Osire T; Yang S; Rao Z
    Microb Cell Fact; 2019 Jan; 18(1):12. PubMed ID: 30678678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the cytochrome P450 enzyme system for electrode-driven biocatalysis of styrene epoxidation.
    Mayhew MP; Reipa V; Holden MJ; Vilker VL
    Biotechnol Prog; 2000; 16(4):610-6. PubMed ID: 10933836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation.
    Corrado ML; Knaus T; Mutti FG
    Chembiochem; 2018 Apr; 19(7):679-686. PubMed ID: 29378090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation.
    Theodosiou E; Frick O; Bühler B; Schmid A
    Microb Cell Fact; 2015 Jul; 14():108. PubMed ID: 26215086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.