BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 18192422)

  • 21. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.
    Volmer J; Neumann C; Bühler B; Schmid A
    Appl Environ Microbiol; 2014 Oct; 80(20):6539-48. PubMed ID: 25128338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of Enantiopure Chiral Epoxides with
    Gyuranová D; Štadániová R; Hegyi Z; Fischer R; Rebroš M
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33802034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis.
    Gursky LJ; Nikodinovic-Runic J; Feenstra KA; O'Connor KE
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):995-1004. PubMed ID: 19568744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120.
    Panke S; Witholt B; Schmid A; Wubbolts MG
    Appl Environ Microbiol; 1998 Jun; 64(6):2032-43. PubMed ID: 9603811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis.
    Hollmann F; Lin PC; Witholt B; Schmid A
    J Am Chem Soc; 2003 Jul; 125(27):8209-17. PubMed ID: 12837091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources.
    McKenna R; Pugh S; Thompson B; Nielsen DR
    Biotechnol J; 2013 Dec; 8(12):1465-75. PubMed ID: 23801570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of two styrene monooxygenases from marine microbes.
    Pu W; Cui C; Guo C; Wu ZL
    Enzyme Microb Technol; 2018 May; 112():29-34. PubMed ID: 29499777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis.
    Bühler B; Bollhalder I; Hauer B; Witholt B; Schmid A
    Biotechnol Bioeng; 2003 Mar; 81(6):683-94. PubMed ID: 12529882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation.
    Hollmann F; Hofstetter K; Habicher T; Hauer B; Schmid A
    J Am Chem Soc; 2005 May; 127(18):6540-1. PubMed ID: 15869268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase.
    Kantz A; Gassner GT
    Biochemistry; 2011 Feb; 50(4):523-32. PubMed ID: 21166448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization of an (R)-selective styrene monooxygenase from streptomyces sp. NRRL S-31.
    Cui C; Guo C; Lin H; Ding ZY; Liu Y; Wu ZL
    Enzyme Microb Technol; 2020 Jan; 132():109391. PubMed ID: 31731956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity.
    Lin H; Tang DF; Ahmed AA; Liu Y; Wu ZL
    J Biotechnol; 2012 Oct; 161(3):235-41. PubMed ID: 22796094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium.
    Sánchez AM; Bennett GN; San KY
    J Biotechnol; 2005 Jun; 117(4):395-405. PubMed ID: 15925720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications.
    Panke S; de Lorenzo V; Kaiser A; Witholt B; Wubbolts MG
    Appl Environ Microbiol; 1999 Dec; 65(12):5619-23. PubMed ID: 10584030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.
    Toda H; Itoh N
    J Biosci Bioeng; 2012 Jan; 113(1):12-9. PubMed ID: 21996027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereospecific dihydroxylation of the styrene vinyl group by purified naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4.
    Lee K; Gibson DT
    J Bacteriol; 1996 Jun; 178(11):3353-6. PubMed ID: 8655521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis of synthons in two-liquid-phase media.
    Wubbolts MG; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1996 Oct; 52(2):301-8. PubMed ID: 18629897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1.
    Gröning JA; Kaschabek SR; Schlömann M; Tischler D
    Arch Microbiol; 2014 Dec; 196(12):829-45. PubMed ID: 25116410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.