BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18192430)

  • 1. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae.
    Linderholm AL; Findleton CL; Kumar G; Hong Y; Bisson LF
    Appl Environ Microbiol; 2008 Mar; 74(5):1418-27. PubMed ID: 18192430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production.
    Cordente AG; Heinrich A; Pretorius IS; Swiegers JH
    FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae.
    Linderholm A; Dietzel K; Hirst M; Bisson LF
    Appl Environ Microbiol; 2010 Dec; 76(23):7699-707. PubMed ID: 20889780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MET2 affects production of hydrogen sulfide during wine fermentation.
    Huang C; Roncoroni M; Gardner RC
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7125-35. PubMed ID: 24841117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
    Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V
    Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine.
    Ugliano M; Fedrizzi B; Siebert T; Travis B; Magno F; Versini G; Henschke PA
    J Agric Food Chem; 2009 Jun; 57(11):4948-55. PubMed ID: 19391591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae.
    Yoshida S; Imoto J; Minato T; Oouchi R; Kamada Y; Tomita M; Soga T; Yoshimoto H
    Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Gardner RC; Jiranek V
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28810701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.
    Mendes-Ferreira A; Barbosa C; Jimenez-Marti E; Del Olmo ML; Mendes-Faia A
    J Microbiol Biotechnol; 2010 Sep; 20(9):1314-21. PubMed ID: 20890097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ high throughput method for H(2)S detection during micro-scale wine fermentation.
    Winter G; Curtin C
    J Microbiol Methods; 2012 Oct; 91(1):165-70. PubMed ID: 22981795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survey of hydrogen sulphide production by wine yeasts.
    Mendes-Ferreira A; Mendes-Faia A; Leão C
    J Food Prot; 2002 Jun; 65(6):1033-7. PubMed ID: 12092717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Roncoroni M; Gardner RC; Jiranek V
    FEMS Yeast Res; 2016 Dec; 16(8):. PubMed ID: 27915245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context.
    Huang CW; Walker ME; Fedrizzi B; Gardner RC; Jiranek V
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28830086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a method to measure hydrogen sulfide in wine fermentation.
    Park SK
    J Microbiol Biotechnol; 2008 Sep; 18(9):1550-4. PubMed ID: 18852511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Saccharomyces cerevisiae strains isolated from must of grape grown in experimental vineyard.
    Cappello MS; Bleve G; Grieco F; Dellaglio F; Zacheo G
    J Appl Microbiol; 2004; 97(6):1274-80. PubMed ID: 15546418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts.
    Harsch MJ; Gardner RC
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):223-35. PubMed ID: 22684328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide.
    Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B
    Food Chem; 2016 Oct; 209():341-7. PubMed ID: 27173572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis.
    Li Y; Zhang Y; Liu M; Qin Y; Liu Y
    Food Microbiol; 2019 Jun; 79():147-155. PubMed ID: 30621870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation.
    Bartra E; Casado M; Carro D; Campamà C; Piña B
    J Appl Microbiol; 2010 Jul; 109(1):272-81. PubMed ID: 20059614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.