BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18192505)

  • 1. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML.
    Sallmyr A; Fan J; Datta K; Kim KT; Grosu D; Shapiro P; Small D; Rassool F
    Blood; 2008 Mar; 111(6):3173-82. PubMed ID: 18192505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depalmitoylation rewires FLT3-ITD signaling and exacerbates leukemia progression.
    Lv K; Ren JG; Han X; Gui J; Gong C; Tong W
    Blood; 2021 Dec; 138(22):2244-2255. PubMed ID: 34111291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pim kinase inhibitor co-treatment decreases alternative non-homologous end-joining DNA repair and genomic instability induced by topoisomerase 2 inhibitors in cells with FLT3 internal tandem duplication.
    Scarpa M; Kapoor S; Tvedte ES; Doshi KA; Zou YS; Singh P; Lee JK; Chatterjee A; Ali MKM; Bromley RE; Hotopp JCD; Rassool FV; Baer MR
    Oncotarget; 2021 Aug; 12(18):1763-1779. PubMed ID: 34504649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors.
    Tecik M; Adan A
    Curr Treat Options Oncol; 2024 May; ():. PubMed ID: 38696033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of NOTCH4 sensitizes FLT3/ITD acute myeloid leukemia cells to FLT3 tyrosine kinase inhibition.
    Zhu R; Shirley CM; Chu SH; Li L; Nguyen BH; Seo J; Wu M; Seale T; Duffield AS; Staudt LM; Levis M; Hu Y; Small D
    Leukemia; 2024 May; ():. PubMed ID: 38811818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paclitaxel mediates the PI3K/AKT/mTOR pathway to reduce proliferation of FLT3‑ITD
    Su Y; Wu M; Zhou B; Bai Z; Pang R; Liu Z; Zhao W
    Exp Ther Med; 2024 Apr; 27(4):161. PubMed ID: 38476887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological inhibition of RAS overcomes FLT3 inhibitor resistance in FLT3-ITD+ AML through AP-1 and RUNX1.
    Coleman DJL; Keane P; Chin PS; Ames L; Kellaway S; Blair H; Khan N; Griffin J; Holmes E; Maytum A; Potluri S; Strate L; Koscielniak K; Raghavan M; Bushweller J; Heidenreich O; Rabbitts T; Cockerill PN; Bonifer C
    iScience; 2024 Apr; 27(4):109576. PubMed ID: 38638836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Role of Activation Loop Mutants in Drug Efficacy for FLT3-ITD.
    Kazi JU; Al Ashiri L; Purohit R; Rönnstrand L
    Cancers (Basel); 2023 Nov; 15(22):. PubMed ID: 38001685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory network analysis predicts cooperating transcription factor regulons required for FLT3-ITD+ AML growth.
    Coleman DJL; Keane P; Luque-Martin R; Chin PS; Blair H; Ames L; Kellaway SG; Griffin J; Holmes E; Potluri S; Assi SA; Bushweller J; Heidenreich O; Cockerill PN; Bonifer C
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species Rewires Metabolic Activity in Acute Myeloid Leukemia.
    Robinson AJ; Davies S; Darley RL; Tonks A
    Front Oncol; 2021; 11():632623. PubMed ID: 33777786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How CHKing ROS signaling preserves genomic integrity.
    Venkatachalam A; Kaufmann SH
    Cell Res; 2023 Nov; 33(11):815-816. PubMed ID: 37380808
    [No Abstract]   [Full Text] [Related]  

  • 12. NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells.
    Stanicka J; Russell EG; Woolley JF; Cotter TG
    J Biol Chem; 2015 Apr; 290(15):9348-61. PubMed ID: 25697362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ.
    Godfrey R; Arora D; Bauer R; Stopp S; Müller JP; Heinrich T; Böhmer SA; Dagnell M; Schnetzke U; Scholl S; Östman A; Böhmer FD
    Blood; 2012 May; 119(19):4499-511. PubMed ID: 22438257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H2O2 production downstream of FLT3 is mediated by p22phox in the endoplasmic reticulum and is required for STAT5 signalling.
    Woolley JF; Naughton R; Stanicka J; Gough DR; Bhatt L; Dickinson BC; Chang CJ; Cotter TG
    PLoS One; 2012; 7(7):e34050. PubMed ID: 22807997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NFATc1 as a therapeutic target in FLT3-ITD-positive AML.
    Metzelder SK; Michel C; von Bonin M; Rehberger M; Hessmann E; Inselmann S; Solovey M; Wang Y; Sohlbach K; Brendel C; Stiewe T; Charles J; Ten Haaf A; Ellenrieder V; Neubauer A; Gattenlöhner S; Bornhäuser M; Burchert A
    Leukemia; 2015 Jul; 29(7):1470-7. PubMed ID: 25976987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling.
    Hole PS; Zabkiewicz J; Munje C; Newton Z; Pearn L; White P; Marquez N; Hills RK; Burnett AK; Tonks A; Darley RL
    Blood; 2013 Nov; 122(19):3322-30. PubMed ID: 24089327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLT3-ITD and its current role in acute myeloid leukaemia.
    Lagunas-Rangel FA; Chávez-Valencia V
    Med Oncol; 2017 Jun; 34(6):114. PubMed ID: 28470536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: implications for genomic instability and therapy.
    Fan J; Li L; Small D; Rassool F
    Blood; 2010 Dec; 116(24):5298-305. PubMed ID: 20807885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FLT3-ITD confers resistance to the PI3K/Akt pathway inhibitors by protecting the mTOR/4EBP1/Mcl-1 pathway through STAT5 activation in acute myeloid leukemia.
    Nogami A; Oshikawa G; Okada K; Fukutake S; Umezawa Y; Nagao T; Kurosu T; Miura O
    Oncotarget; 2015 Apr; 6(11):9189-205. PubMed ID: 25826077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair.
    Sallmyr A; Fan J; Rassool FV
    Cancer Lett; 2008 Oct; 270(1):1-9. PubMed ID: 18467025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.