BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18192505)

  • 21. Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia.
    Lim Y; Gondek L; Li L; Wang Q; Ma H; Chang E; Huso DL; Foerster S; Marchionni L; McGovern K; Watkins DN; Peacock CD; Levis M; Smith BD; Merchant AA; Small D; Matsui W
    Sci Transl Med; 2015 Jun; 7(291):291ra96. PubMed ID: 26062848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perturbation of cellular oxidative state induced by dichloroacetate and arsenic trioxide for treatment of acute myeloid leukemia.
    Emadi A; Sadowska M; Carter-Cooper B; Bhatnagar V; van der Merwe I; Levis MJ; Sausville EA; Lapidus RG
    Leuk Res; 2015 Jul; 39(7):719-29. PubMed ID: 25982179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity.
    Kang Y; Tiziani S; Park G; Kaul M; Paternostro G
    Nat Commun; 2014 Apr; 5():3672. PubMed ID: 24739485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia.
    Warsch W; Grundschober E; Berger A; Gille L; Cerny-Reiterer S; Tigan AS; Hoelbl-Kovacic A; Valent P; Moriggl R; Sexl V
    Oncotarget; 2012 Dec; 3(12):1669-87. PubMed ID: 23458731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A role of Gab2 association in Flt3 ITD mediated Stat5 phosphorylation and cell survival.
    Masson K; Liu T; Khan R; Sun J; Rönnstrand L
    Br J Haematol; 2009 Jul; 146(2):193-202. PubMed ID: 19438505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia.
    Sillar JR; Germon ZP; DeIuliis GN; Dun MD
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting FLT3 mutations in AML: review of current knowledge and evidence.
    Daver N; Schlenk RF; Russell NH; Levis MJ
    Leukemia; 2019 Feb; 33(2):299-312. PubMed ID: 30651634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress.
    Doshi KA; Trotta R; Natarajan K; Rassool FV; Tron AE; Huszar D; Perrotti D; Baer MR
    Oncotarget; 2016 Jul; 7(30):48280-48295. PubMed ID: 27374090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Do reactive oxygen species play a role in myeloid leukemias?
    Hole PS; Darley RL; Tonks A
    Blood; 2011 Jun; 117(22):5816-26. PubMed ID: 21398578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA damage response genes as biomarkers of therapeutic outcomes in acute myeloid leukemia patients.
    Karami A; Skorski T
    Leukemia; 2024 Jun; 38(6):1407-1410. PubMed ID: 38734788
    [No Abstract]   [Full Text] [Related]  

  • 31. A succinylation switch to maligancy: SUCLG1, mitochondrial transcription and leukemia.
    Guerrero L; Ntziachristos P
    EMBO J; 2024 Jun; 43(12):2291-2293. PubMed ID: 38724759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative stress is two-sided in the treatment of acute myeloid leukemia.
    Fan C; Yang X; Yan L; Shi Z
    Cancer Med; 2024 May; 13(9):e6806. PubMed ID: 38715546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species and its role in pathogenesis and resistance to therapy in acute myeloid leukemia.
    Khorashad JS; Rizzo S; Tonks A
    Cancer Drug Resist; 2024; 7():5. PubMed ID: 38434766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct roles of hematopoietic cytokines in the regulation of leukemia stem cells in murine MLL-AF9 leukemia.
    Li Y; Seet CS; Mack R; Joshi K; Runde AP; Hagen PA; Barton K; Breslin P; Kini A; Ji HL; Zhang J
    Stem Cell Reports; 2024 Jan; 19(1):100-111. PubMed ID: 38101400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ferroptosis landscape in acute myeloid leukemia.
    Ma Z; Ye W; Huang X; Li X; Li F; Lin X; Hu C; Wang J; Jin J; Zhu B; Huang J
    Aging (Albany NY); 2023 Nov; 15(22):13486-13503. PubMed ID: 38032290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nonessential amino acid cysteine is required to prevent ferroptosis in acute myeloid leukemia.
    Cunningham A; Oudejans LL; Geugien M; Pereira-Martins DA; Wierenga ATJ; Erdem A; Sternadt D; Huls G; Schuringa JJ
    Blood Adv; 2024 Jan; 8(1):56-69. PubMed ID: 37906522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies.
    Zhang H; Sun C; Sun Q; Li Y; Zhou C; Sun C
    Front Mol Biosci; 2023; 10():1275774. PubMed ID: 37818101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia.
    Humphries S; Bond DR; Germon ZP; Keely S; Enjeti AK; Dun MD; Lee HJ
    Clin Epigenetics; 2023 Sep; 15(1):150. PubMed ID: 37705055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of Tyrosine Kinase Inhibitor-Loaded Gold Nanoparticles for Stimuli-Triggered Antileukemic Drug Release.
    Tatar AS; Nagy-Simon T; Tigu AB; Tomuleasa C; Boca S
    J Funct Biomater; 2023 Jul; 14(8):. PubMed ID: 37623644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shift of N-MYC Oncogene Expression in AML Patients Carrying the FLT3-ITD Mutation.
    Bogdanov K; Kudryavtseva E; Fomicheva Y; Churkina I; Lomaia E; Girshova L; Osipov Y; Zaritskey A
    Pathophysiology; 2023 Aug; 30(3):296-313. PubMed ID: 37606386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.