These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18192743)
1. The influence of energy crop substrates on the mass-flow analysis and the residual methane potential at a rural anaerobic digestion plant. Resch C; Braun R; Kirchmayr R Water Sci Technol; 2008; 57(1):73-81. PubMed ID: 18192743 [TBL] [Abstract][Full Text] [Related]
2. The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests. Hinken L; Urban I; Haun E; Urban I; Weichgrebe D; Rosenwinkel KH Water Sci Technol; 2008; 58(7):1453-9. PubMed ID: 18957759 [TBL] [Abstract][Full Text] [Related]
3. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Amon T; Amon B; Kryvoruchko V; Machmüller A; Hopfner-Sixt K; Bodiroza V; Hrbek R; Friedel J; Pötsch E; Wagentristl H; Schreiner M; Zollitsch W Bioresour Technol; 2007 Dec; 98(17):3204-12. PubMed ID: 16935493 [TBL] [Abstract][Full Text] [Related]
4. The impact of increasing energy crop addition on process performance and residual methane potential in anaerobic digestion. Lindorfer H; Pérez López C; Resch C; Braun R; Kirchmayr R Water Sci Technol; 2007; 56(10):55-63. PubMed ID: 18048977 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. Cirne DG; Lehtomäki A; Björnsson L; Blackall LL J Appl Microbiol; 2007 Sep; 103(3):516-27. PubMed ID: 17714384 [TBL] [Abstract][Full Text] [Related]
6. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Gerin PA; Vliegen F; Jossart JM Bioresour Technol; 2008 May; 99(7):2620-7. PubMed ID: 17574409 [TBL] [Abstract][Full Text] [Related]
7. Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralisation and heavy metal mobilisation. Lehtomäki A; Björnsson L Environ Technol; 2006 Feb; 27(2):209-18. PubMed ID: 16506517 [TBL] [Abstract][Full Text] [Related]
8. Application of a fuzzy logic control system for continuous anaerobic digestion of low buffered, acidic energy crops as mono-substrate. Scherer P; Lehmann K; Schmidt O; Demirel B Biotechnol Bioeng; 2009 Feb; 102(3):736-48. PubMed ID: 18988261 [TBL] [Abstract][Full Text] [Related]
9. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion. Corneli E; Dragoni F; Adessi A; De Philippis R; Bonari E; Ragaglini G Bioresour Technol; 2016 Jul; 211():509-18. PubMed ID: 27038259 [TBL] [Abstract][Full Text] [Related]
10. Co-digestion of energy crops and the source-sorted organic fraction of municipal solid waste. Nordberg A; Edström M Water Sci Technol; 2005; 52(1-2):217-22. PubMed ID: 16180431 [TBL] [Abstract][Full Text] [Related]
11. Assessment of energy crops alternative to maize for biogas production in the Greater Region. Mayer F; Gerin PA; Noo A; Lemaigre S; Stilmant D; Schmit T; Leclech N; Ruelle L; Gennen J; von Francken-Welz H; Foucart G; Flammang J; Weyland M; Delfosse P Bioresour Technol; 2014 Aug; 166():358-67. PubMed ID: 24929279 [TBL] [Abstract][Full Text] [Related]
12. Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage. Nges IA; Björn A; Björnsson L Bioresour Technol; 2012 Aug; 118():445-54. PubMed ID: 22717562 [TBL] [Abstract][Full Text] [Related]
13. Methane yield through anaerobic digestion for various maize varieties in China. Gao R; Yuan X; Zhu W; Wang X; Chen S; Cheng X; Cui Z Bioresour Technol; 2012 Aug; 118():611-4. PubMed ID: 22704906 [TBL] [Abstract][Full Text] [Related]
14. Biogas production from crop residues on a farm-scale level in Sweden: scale, choice of substrate and utilisation rate most important parameters for financial feasibility. Svensson LM; Christensson K; Björnsson L Bioprocess Biosyst Eng; 2006 Jul; 29(2):137-42. PubMed ID: 16770592 [TBL] [Abstract][Full Text] [Related]
15. Biogas from energy crops--optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions. Seppälä M; Paavola T; Lehtomäki A; Pakarinen O; Rintala J Water Sci Technol; 2008; 58(9):1857-63. PubMed ID: 19029729 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic digestion of maize in coupled leach-bed and anaerobic filter reactors. Cysneiros D; Banks CJ; Heaven S Water Sci Technol; 2008; 58(7):1505-11. PubMed ID: 18957766 [TBL] [Abstract][Full Text] [Related]
17. Co-digestion of grass silage and cow manure in a CSTR by re-circulation of alkali treated solids of the digestate. Jagadabhi PS; Lehtomäki A; Rintala J Environ Technol; 2008 Oct; 29(10):1085-93. PubMed ID: 18942576 [TBL] [Abstract][Full Text] [Related]
18. Application of Anaerobic Digestion Model No. 1 for describing anaerobic digestion of grass, maize, green weed silage, and industrial glycerine. Biernacki P; Steinigeweg S; Borchert A; Uhlenhut F Bioresour Technol; 2013 Jan; 127():188-94. PubMed ID: 23131640 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic digestion of grass silage in batch leach bed processes for methane production. Lehtomäki A; Huttunen S; Lehtinen TM; Rintala JA Bioresour Technol; 2008 May; 99(8):3267-78. PubMed ID: 17702572 [TBL] [Abstract][Full Text] [Related]
20. Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Pobeheim H; Munk B; Johansson J; Guebitz GM Bioresour Technol; 2010 Jan; 101(2):836-9. PubMed ID: 19765984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]