These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18193016)

  • 1. Use of Raman spectroscopy as a tool for in situ monitoring of microwave-promoted reactions.
    Leadbeater NE; Schmink JR
    Nat Protoc; 2008; 3(1):1-7. PubMed ID: 18193016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy.
    Leadbeater NE; Smith RJ
    Org Lett; 2006 Sep; 8(20):4589-91. PubMed ID: 16986957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time in situ Raman analysis of microwave-assisted organic reactions.
    Pivonka DE; Empfield JR
    Appl Spectrosc; 2004 Jan; 58(1):41-6. PubMed ID: 14727719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using in situ Raman monitoring as a tool for rapid optimisation and scale-up of microwave-promoted organic synthesis: esterification as an example.
    Leadbeater NE; Smith RJ; Barnard TM
    Org Biomol Chem; 2007 Mar; 5(5):822-5. PubMed ID: 17315069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Raman spectroscopy as an in situ tool to obtain kinetic data for organic transformations.
    Schmink JR; Holcomb JL; Leadbeater NE
    Chemistry; 2008; 14(32):9943-50. PubMed ID: 18830985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Developments of high temperature Raman spectroscopic techniques].
    Jiang G; You J; Yu B; Haung S
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Apr; 20(2):206-9, 221. PubMed ID: 12953489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time monitoring of microwave-promoted organometallic ligand-substitution reactions using in situ Raman spectroscopy.
    Barnard TM; Leadbeater NE
    Chem Commun (Camb); 2006 Sep; (34):3615-6. PubMed ID: 17047782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the transition temperature for an enantiotropic polymorphic system from the transformation kinetics monitored using Raman spectroscopy.
    Hu Y; Wikström H; Byrn SR; Taylor LS
    J Pharm Biomed Anal; 2007 Nov; 45(4):546-51. PubMed ID: 17851013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Raman reaction monitoring using the solvent as internal standard.
    Aarnoutse PJ; Westerhuis JA
    Anal Chem; 2005 Mar; 77(5):1228-36. PubMed ID: 15732901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time Monitoring of Reactions Performed Using Continuous-flow Processing: The Preparation of 3-Acetylcoumarin as an Example.
    Hamlin TA; Leadbeater NE
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process.
    De Beer TR; Bodson C; Dejaegher B; Walczak B; Vercruysse P; Burggraeve A; Lemos A; Delattre L; Heyden YV; Remon JP; Vervaet C; Baeyens WR
    J Pharm Biomed Anal; 2008 Nov; 48(3):772-9. PubMed ID: 18799281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ Raman spectroscopy as a probe for the effect of power on microwave-promoted Suzuki coupling reactions.
    Leadbeater NE; Smith RJ
    Org Biomol Chem; 2007 Sep; 5(17):2770-4. PubMed ID: 17700844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: the case of lipase-catalysed transesterification reactions.
    Leadbeater NE; Stencel LM; Wood EC
    Org Biomol Chem; 2007 Apr; 5(7):1052-5. PubMed ID: 17377658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batch and continuous flow preparation of Hantzsch 1,4-dihydropyridines under microwave heating and simultaneous real-time monitoring by Raman spectroscopy. An exploratory study.
    Christiaens S; Vantyghem X; Radoiu M; Vanden Eynde JJ
    Molecules; 2014 Jul; 19(7):9986-98. PubMed ID: 25010470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ reaction monitoring of microwave-mediated reactions using IR spectroscopy.
    Leadbeater NE
    Chem Commun (Camb); 2010 Sep; 46(36):6693-5. PubMed ID: 20717594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectroscopy and electron-phonon interactions in microwave-hydrothermal synthesized Ba(Mn1/3Nb2/3)O3 complex perovskites.
    Dias A; Matinaga FM; Moreira RL
    J Phys Chem B; 2009 Jul; 113(29):9749-55. PubMed ID: 19569633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes.
    Brunetti FG; Herrero MA; Muñoz Jde M; Giordani S; Díaz-Ortiz A; Filippone S; Ruaro G; Meneghetti M; Prato M; Vázquez E
    J Am Chem Soc; 2007 Nov; 129(47):14580-1. PubMed ID: 17985916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-Raman spectroscopy as a routine tool for garnet analysis.
    Bersani D; Andò S; Vignola P; Moltifiori G; Marino IG; Lottici PP; Diella V
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):484-91. PubMed ID: 19144562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensation reaction between carbohydrazide and salicylaldehyde: in-line vibrational spectroscopy monitoring and characterization of the reaction products in solution and solid state.
    Jednačak T; Novak P; Hodzic A; Scheibelhofer O; Khinast JG; Plavec J; Sket P; Parlov VJ
    Acta Chim Slov; 2014; 61(1):161-9. PubMed ID: 24664340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of beta-oxodithioesters in domino and multicomponent reactions: facile route to dihydropyrimidines and coumarins.
    Singh OM; Devi NS
    J Org Chem; 2009 Apr; 74(8):3141-4. PubMed ID: 19301883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.