BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 18193272)

  • 21. Skeletal muscle hypertrophy and atrophy signaling pathways.
    Glass DJ
    Int J Biochem Cell Biol; 2005 Oct; 37(10):1974-84. PubMed ID: 16087388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanisms of skeletal muscle atrophy in a mouse model of cerebral ischemia.
    Desgeorges MM; Devillard X; Toutain J; Divoux D; Castells J; Bernaudin M; Touzani O; Freyssenet DG
    Stroke; 2015 Jun; 46(6):1673-80. PubMed ID: 25953371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcineurin signaling and neural control of skeletal muscle fiber type and size.
    Schiaffino S; Serrano A
    Trends Pharmacol Sci; 2002 Dec; 23(12):569-75. PubMed ID: 12457775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction.
    Schulze PC; Fang J; Kassik KA; Gannon J; Cupesi M; MacGillivray C; Lee RT; Rosenthal N
    Circ Res; 2005 Sep; 97(5):418-26. PubMed ID: 16051886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway.
    Dreyer HC; Glynn EL; Lujan HL; Fry CS; DiCarlo SE; Rasmussen BB
    J Appl Physiol (1985); 2008 Jan; 104(1):27-33. PubMed ID: 17885021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucocorticoid-induced skeletal muscle atrophy.
    Schakman O; Kalista S; Barbé C; Loumaye A; Thissen JP
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2163-72. PubMed ID: 23806868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondria-cytokine crosstalk following skeletal muscle injury and disuse: a mini-review.
    Qualls AE; Southern WM; Call JA
    Am J Physiol Cell Physiol; 2021 May; 320(5):C681-C688. PubMed ID: 33566726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insulin-like growth factor I slows the rate of denervation induced skeletal muscle atrophy.
    Shavlakadze T; White JD; Davies M; Hoh JF; Grounds MD
    Neuromuscul Disord; 2005 Feb; 15(2):139-46. PubMed ID: 15694135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular and molecular mechanisms of apoptosis in age-related muscle atrophy.
    Dirks-Naylor AJ; Lennon-Edwards S
    Curr Aging Sci; 2011 Dec; 4(3):269-78. PubMed ID: 21529323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.
    Baehr LM; West DW; Marcotte G; Marshall AG; De Sousa LG; Baar K; Bodine SC
    Aging (Albany NY); 2016 Jan; 8(1):127-46. PubMed ID: 26826670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Insulin-like growth factor 1 and the key markers of proteolysis during the acute period of readaptation of the muscle atrophied as a result of unloading].
    Kachaeva EV; Turtikova OV; Leĭnsoo TA; Shenkman BS
    Biofizika; 2010; 55(6):1108-16. PubMed ID: 21268357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular regulation of skeletal muscle mass.
    Russell AP
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):378-84. PubMed ID: 19650790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. β-Hydroxy-β-methylbutyrate facilitates PI3K/Akt-dependent mammalian target of rapamycin and FoxO1/3a phosphorylations and alleviates tumor necrosis factor α/interferon γ-induced MuRF-1 expression in C2C12 cells.
    Kimura K; Cheng XW; Inoue A; Hu L; Koike T; Kuzuya M
    Nutr Res; 2014 Apr; 34(4):368-74. PubMed ID: 24774073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Type 2 diabetes causes skeletal muscle atrophy but does not impair resistance training-mediated myonuclear accretion and muscle mass gain in rats.
    Ato S; Kido K; Sato K; Fujita S
    Exp Physiol; 2019 Oct; 104(10):1518-1531. PubMed ID: 31328833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Altered expression of genes regulating skeletal muscle mass in the portacaval anastomosis rat.
    Dasarathy S; Muc S; Hisamuddin K; Edmison JM; Dodig M; McCullough AJ; Kalhan SC
    Am J Physiol Gastrointest Liver Physiol; 2007 Apr; 292(4):G1105-13. PubMed ID: 17185634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of ATF4 in skeletal muscle atrophy.
    Adams CM; Ebert SM; Dyle MC
    Curr Opin Clin Nutr Metab Care; 2017 May; 20(3):164-168. PubMed ID: 28376050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms.
    Baldwin KM; Haddad F
    Am J Phys Med Rehabil; 2002 Nov; 81(11 Suppl):S40-51. PubMed ID: 12409810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) in skeletal muscle atrophy and hypertrophy.
    Norrby M; Tågerud S
    J Cell Physiol; 2010 Apr; 223(1):194-201. PubMed ID: 20049871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Satellite cell regulation of muscle mass is altered at old age.
    Gallegly JC; Turesky NA; Strotman BA; Gurley CM; Peterson CA; Dupont-Versteegden EE
    J Appl Physiol (1985); 2004 Sep; 97(3):1082-90. PubMed ID: 15121742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass.
    Frost RA; Lang CH
    J Appl Physiol (1985); 2007 Jul; 103(1):378-87. PubMed ID: 17332274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.