BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18193280)

  • 1. Assessing a signal model and identifying brain activity from fMRI data by a detrending-based fractal analysis.
    Hu J; Lee JM; Gao J; White KD; Crosson B
    Brain Struct Funct; 2008 Feb; 212(5):417-26. PubMed ID: 18193280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminating brain activity from task-related artifacts in functional MRI: fractal scaling analysis simulation and application.
    Lee JM; Hu J; Gao J; Crosson B; Peck KK; Wierenga CE; McGregor K; Zhao Q; White KD
    Neuroimage; 2008 Mar; 40(1):197-212. PubMed ID: 18178485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A family of locally constrained CCA models for detecting activation patterns in fMRI.
    Zhuang X; Yang Z; Curran T; Byrd R; Nandy R; Cordes D
    Neuroimage; 2017 Apr; 149():63-84. PubMed ID: 28041980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approaches to receiver operating characteristic methods in functional magnetic resonance imaging with real data using repeated trials.
    Nandy RR; Cordes D
    Magn Reson Med; 2004 Dec; 52(6):1424-31. PubMed ID: 15562482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of artifacts in knee joint vibroarthrographic signals using ensemble empirical mode decomposition and detrended fluctuation analysis.
    Wu Y; Yang S; Zheng F; Cai S; Lu M; Wu M
    Physiol Meas; 2014 Mar; 35(3):429-39. PubMed ID: 24521557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No time for drifting: Comparing performance and applicability of signal detrending algorithms for real-time fMRI.
    Kopel R; Sladky R; Laub P; Koush Y; Robineau F; Hutton C; Weiskopf N; Vuilleumier P; Van De Ville D; Scharnowski F
    Neuroimage; 2019 May; 191():421-429. PubMed ID: 30818024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
    Zhang J; Tuo X; Yuan Z; Liao W; Chen H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3184-96. PubMed ID: 21859596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies.
    Lin FH; McIntosh AR; Agnew JA; Eden GF; Zeffiro TA; Belliveau JW
    Neuroimage; 2003 Oct; 20(2):625-42. PubMed ID: 14568440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How ignoring physiological noise can bias the conclusions from fMRI simulation results.
    Welvaert M; Rosseel Y
    J Neurosci Methods; 2012 Oct; 211(1):125-32. PubMed ID: 22960507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parallel approach to STAP implementation for fMRI data.
    Thompson EA
    J Magn Reson Imaging; 2006 Feb; 23(2):216-21. PubMed ID: 16416435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-independent method for fMRI analysis.
    Soltanian-Zadeh H; Peck DJ; Hearshen DO; Lajiness-O'Neill RR
    IEEE Trans Med Imaging; 2004 Mar; 23(3):285-96. PubMed ID: 15027521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Support vector machine learning-based fMRI data group analysis.
    Wang Z; Childress AR; Wang J; Detre JA
    Neuroimage; 2007 Jul; 36(4):1139-51. PubMed ID: 17524674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.
    Koush Y; Zvyagintsev M; Dyck M; Mathiak KA; Mathiak K
    Neuroimage; 2012 Jan; 59(1):478-89. PubMed ID: 21839842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal dimension analysis for spike detection in low SNR extracellular signals.
    Salmasi M; Büttner U; Glasauer S
    J Neural Eng; 2016 Jun; 13(3):036004. PubMed ID: 27064604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI.
    Fox MD; Qian T; Madsen JR; Wang D; Li M; Ge M; Zuo HC; Groppe DM; Mehta AD; Hong B; Liu H
    Neuroimage; 2016 Jan; 124(Pt A):714-723. PubMed ID: 26408860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of detrending methods for optimal fMRI preprocessing.
    Tanabe J; Miller D; Tregellas J; Freedman R; Meyer FG
    Neuroimage; 2002 Apr; 15(4):902-7. PubMed ID: 11906230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG signal classification method based on fractal features and neural network.
    Phothisonothai M; Nakagawa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3880-3. PubMed ID: 19163560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics.
    LaConte S; Anderson J; Muley S; Ashe J; Frutiger S; Rehm K; Hansen LK; Yacoub E; Hu X; Rottenberg D; Strother S
    Neuroimage; 2003 Jan; 18(1):10-27. PubMed ID: 12507440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.