These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18193280)

  • 41. A correlation-based method for extracting subject-specific components and artifacts from group-fMRI data.
    Pamilo S; Malinen S; Hotta J; Seppä M
    Eur J Neurosci; 2015 Nov; 42(9):2726-41. PubMed ID: 26226919
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution fMRI: overcoming the signal-to-noise problem.
    Tabelow K; Piëch V; Polzehl J; Voss HU
    J Neurosci Methods; 2009 Apr; 178(2):357-65. PubMed ID: 19135087
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetic resonance imaging studies of functional brain activation: analysis and interpretation.
    McCarthy G; Puce A; Luby M; Belger A; Allison T
    Electroencephalogr Clin Neurophysiol Suppl; 1996; 47():15-31. PubMed ID: 9335966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploitation of temporal redundancy in compressed sensing reconstruction of fMRI studies with a prior-based algorithm (PICCS).
    Chavarrías C; Abascal JF; Montesinos P; Desco M
    Med Phys; 2015 Jul; 42(7):3814-21. PubMed ID: 26133583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adaptive denoising of event-related functional magnetic resonance imaging data using spectral subtraction.
    Kadah YM
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1944-53. PubMed ID: 15536896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detectability and reproducibility of the olfactory fMRI signal under the influence of magnetic susceptibility artifacts in the primary olfactory cortex.
    Lu J; Wang X; Qing Z; Li Z; Zhang W; Liu Y; Yuan L; Cheng L; Li M; Zhu B; Zhang X; Yang QX; Zhang B
    Neuroimage; 2018 Sep; 178():613-621. PubMed ID: 29885483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved temporal clustering analysis method for detecting multiple response peaks in fMRI.
    Lu N; Shan BC; Li K; Yan B; Wang W; Li KC
    J Magn Reson Imaging; 2006 Mar; 23(3):285-90. PubMed ID: 16456825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of fMRI motion correction software tools.
    Oakes TR; Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ
    Neuroimage; 2005 Nov; 28(3):529-43. PubMed ID: 16099178
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bayesian methods for FMRI time-series analysis using a nonstationary model for the noise.
    Oikonomou VP; Tripoliti EE; Fotiadis DI
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):664-74. PubMed ID: 20123577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiresolution fMRI activation detection using translation invariant wavelet transform and statistical analysis based on resampling.
    Hossein-Zadeh GA; Soltanian-Zadeh H; Ardekani BA
    IEEE Trans Med Imaging; 2003 Mar; 22(3):302-14. PubMed ID: 12760548
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Likelihood-based hypothesis tests for brain activation detection from MRI data disturbed by colored noise: a simulation study.
    den Dekker AJ; Poot DH; Bos R; Sijbers J
    IEEE Trans Med Imaging; 2009 Feb; 28(2):287-96. PubMed ID: 19188115
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sensitivity enhancement of task-evoked fMRI using ensemble empirical mode decomposition.
    Lin SH; Lin GH; Tsai PJ; Hsu AL; Lo MT; Yang AC; Lin CP; Wu CW
    J Neurosci Methods; 2016 Jan; 258():56-66. PubMed ID: 26523767
    [TBL] [Abstract][Full Text] [Related]  

  • 54. From EEG to BOLD: brain mapping and estimating transfer functions in simultaneous EEG-fMRI acquisitions.
    Sato JR; Rondinoni C; Sturzbecher M; de Araujo DB; Amaro E
    Neuroimage; 2010 May; 50(4):1416-26. PubMed ID: 20116435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Generalized INverse imaging (GIN): ultrafast fMRI with physiological noise correction.
    Boyacioğlu R; Barth M
    Magn Reson Med; 2013 Oct; 70(4):962-71. PubMed ID: 23097342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of FMRI data with drift: modified general linear model and Bayesian estimator.
    Luo H; Puthusserypady S
    IEEE Trans Biomed Eng; 2008 May; 55(5):1504-11. PubMed ID: 18440896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI.
    Gopinath K; Crosson B; McGregor K; Peck K; Chang YL; Moore A; Sherod M; Cavanagh C; Wabnitz A; Wierenga C; White K; Cheshkov S; Krishnamurthy V; Briggs RW
    Hum Brain Mapp; 2009 Apr; 30(4):1105-19. PubMed ID: 18465746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multisubject activation detection in fMRI by testing correlation of data with a signal subspace.
    Shams SM; Hossein-Zadeh GA; Soltanian-Zadeh H
    Magn Reson Imaging; 2006 Jul; 24(6):775-84. PubMed ID: 16824972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BRAD: Software for BRain Activity Detection from hemodynamic response.
    Pidnebesna A; Tomeček D; Hlinka J
    Comput Methods Programs Biomed; 2018 Mar; 156():113-119. PubMed ID: 29428062
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact of signal-to-noise on functional MRI.
    Parrish TB; Gitelman DR; LaBar KS; Mesulam MM
    Magn Reson Med; 2000 Dec; 44(6):925-32. PubMed ID: 11108630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.