These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18193354)

  • 1. Semiparametric analysis of mixture regression models with competing risks data.
    Lu W; Peng L
    Lifetime Data Anal; 2008 Sep; 14(3):231-52. PubMed ID: 18193354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure.
    Moreno-Betancur M; Rey G; Latouche A
    Biometrics; 2015 Jun; 71(2):498-507. PubMed ID: 25761785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiparametric competing risks regression under interval censoring using the R package intccr.
    Park J; Bakoyannis G; Yiannoutsos CT
    Comput Methods Programs Biomed; 2019 May; 173():167-176. PubMed ID: 31046992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum likelihood estimation of semiparametric mixture component models for competing risks data.
    Choi S; Huang X
    Biometrics; 2014 Sep; 70(3):588-98. PubMed ID: 24734912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiparametric accelerated failure time cure rate mixture models with competing risks.
    Choi S; Zhu L; Huang X
    Stat Med; 2018 Jan; 37(1):48-59. PubMed ID: 28983935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiparametric regression analysis of interval-censored competing risks data.
    Mao L; Lin DY; Zeng D
    Biometrics; 2017 Sep; 73(3):857-865. PubMed ID: 28211951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.
    Ng SK; McLachlan GJ
    Stat Med; 2003 Apr; 22(7):1097-111. PubMed ID: 12652556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric regression on cumulative incidence function.
    Jeong JH; Fine JP
    Biostatistics; 2007 Apr; 8(2):184-96. PubMed ID: 16636138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constrained parametric model for simultaneous inference of two cumulative incidence functions.
    Shi H; Cheng Y; Jeong JH
    Biom J; 2013 Jan; 55(1):82-96. PubMed ID: 23090878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiparametric models for cumulative incidence functions.
    Bryant J; Dignam JJ
    Biometrics; 2004 Mar; 60(1):182-90. PubMed ID: 15032788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiparametric mixture cure model analysis with competing risks data: Application to vascular access thrombosis data.
    Chen CM; Shen PS; Lin CC; Wu CC
    Stat Med; 2020 Nov; 39(27):4086-4099. PubMed ID: 32790100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Estimation of Semiparametric Transformation Models for the Cumulative Incidence of Competing Risks.
    Mao L; Lin DY
    J R Stat Soc Series B Stat Methodol; 2017 Mar; 79(2):573-587. PubMed ID: 28239261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A missing data approach to semi-competing risks problems.
    Dignam JJ; Wieand K; Rathouz PJ
    Stat Med; 2007 Feb; 26(4):837-56. PubMed ID: 16755544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiparametric regression on cumulative incidence function with interval-censored competing risks data.
    Bakoyannis G; Yu M; Yiannoutsos CT
    Stat Med; 2017 Oct; 36(23):3683-3707. PubMed ID: 28608412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proportional odds cumulative incidence model for competing risks.
    Eriksson F; Li J; Scheike T; Zhang MJ
    Biometrics; 2015 Sep; 71(3):687-95. PubMed ID: 26013050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiparametric regression and risk prediction with competing risks data under missing cause of failure.
    Bakoyannis G; Zhang Y; Yiannoutsos CT
    Lifetime Data Anal; 2020 Oct; 26(4):659-684. PubMed ID: 31982977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonparametric analysis of bivariate gap time with competing risks.
    Huang CY; Wang C; Wang MC
    Biometrics; 2016 Sep; 72(3):780-90. PubMed ID: 26990686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiparametric marginal regression for clustered competing risks data with missing cause of failure.
    Zhou W; Bakoyannis G; Zhang Y; Yiannoutsos CT
    Biostatistics; 2023 Jul; 24(3):795-810. PubMed ID: 35411923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new flexible dependence measure for semi-competing risks.
    Yang J; Peng L
    Biometrics; 2016 Sep; 72(3):770-9. PubMed ID: 26916804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantile regression for left-truncated semicompeting risks data.
    Li R; Peng L
    Biometrics; 2011 Sep; 67(3):701-10. PubMed ID: 21133883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.