These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The anode potential regulates the bacterial activity in microbial fuel cells. Aelterman P; Freguia S; Keller J; Rabaey K; Verstraete W Commun Agric Appl Biol Sci; 2008; 73(1):85-9. PubMed ID: 18831250 [No Abstract] [Full Text] [Related]
3. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Wei J; Liang P; Cao X; Huang X Environ Sci Technol; 2010 Apr; 44(8):3187-91. PubMed ID: 20345152 [TBL] [Abstract][Full Text] [Related]
4. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Torres CI; Kato Marcus A; Rittmann BE Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519 [TBL] [Abstract][Full Text] [Related]
5. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Aelterman P; Versichele M; Marzorati M; Boon N; Verstraete W Bioresour Technol; 2008 Dec; 99(18):8895-902. PubMed ID: 18524577 [TBL] [Abstract][Full Text] [Related]
6. Continuous microbial fuel cells convert carbohydrates to electricity. Rabaey I; Ossieur W; Verhaege M; Verstraete W Water Sci Technol; 2005; 52(1-2):515-23. PubMed ID: 16180472 [TBL] [Abstract][Full Text] [Related]
7. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Chung K; Okabe S Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637 [TBL] [Abstract][Full Text] [Related]
8. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity. Michie IS; Kim JR; Dinsdale RM; Guwy AJ; Premier GC Appl Microbiol Biotechnol; 2011 Oct; 92(2):419-30. PubMed ID: 21853240 [TBL] [Abstract][Full Text] [Related]
9. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Park DH; Zeikus JG Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258 [TBL] [Abstract][Full Text] [Related]
10. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Tandukar M; Huber SJ; Onodera T; Pavlostathis SG Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938 [TBL] [Abstract][Full Text] [Related]
11. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell. Ishii S; Logan BE; Sekiguchi Y Appl Microbiol Biotechnol; 2012 May; 94(4):1087-94. PubMed ID: 22223104 [TBL] [Abstract][Full Text] [Related]
12. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Huang L; Logan BE Appl Microbiol Biotechnol; 2008 Sep; 80(4):655-64. PubMed ID: 18626640 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of consumption of fermentation products by anode-respiring bacteria. Torres CI; Marcus AK; Rittmann BE Appl Microbiol Biotechnol; 2007 Dec; 77(3):689-97. PubMed ID: 17909786 [TBL] [Abstract][Full Text] [Related]
14. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Rismani-Yazdi H; Christy AD; Dehority BA; Morrison M; Yu Z; Tuovinen OH Biotechnol Bioeng; 2007 Aug; 97(6):1398-407. PubMed ID: 17274068 [TBL] [Abstract][Full Text] [Related]
15. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Tartakovsky B; Guiot SR Biotechnol Prog; 2006; 22(1):241-6. PubMed ID: 16454516 [TBL] [Abstract][Full Text] [Related]
16. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Catal T; Xu S; Li K; Bermek H; Liu H Biosens Bioelectron; 2008 Dec; 24(4):855-60. PubMed ID: 18760591 [TBL] [Abstract][Full Text] [Related]
17. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Jung S; Regan JM Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426 [TBL] [Abstract][Full Text] [Related]
18. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975 [TBL] [Abstract][Full Text] [Related]
19. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Huang L; Chai X; Chen G; Logan BE Environ Sci Technol; 2011 Jun; 45(11):5025-31. PubMed ID: 21528902 [TBL] [Abstract][Full Text] [Related]
20. Electricity generation using a baffled microbial fuel cell convenient for stacking. Li Z; Yao L; Kong L; Liu H Bioresour Technol; 2008 Apr; 99(6):1650-5. PubMed ID: 17532210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]