These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 18194109)
1. A sparse generative model of V1 simple cells with intrinsic plasticity. Weber C; Triesch J Neural Comput; 2008 May; 20(5):1261-84. PubMed ID: 18194109 [TBL] [Abstract][Full Text] [Related]
2. Sparseness, antisparseness and anything in between: the operating point of a neuron determines its computational repertoire. Elliott T Neural Comput; 2014 Sep; 26(9):1924-72. PubMed ID: 24922502 [TBL] [Abstract][Full Text] [Related]
4. Modeling gravity-dependent plasticity of the angular vestibuloocular reflex with a physiologically based neural network. Xiang Y; Yakushin SB; Cohen B; Raphan T J Neurophysiol; 2006 Dec; 96(6):3349-61. PubMed ID: 16971684 [TBL] [Abstract][Full Text] [Related]
5. Excitability changes that complement Hebbian learning. Janowitz MK; van Rossum MC Network; 2006 Mar; 17(1):31-41. PubMed ID: 16613793 [TBL] [Abstract][Full Text] [Related]
6. An invariance principle for maintaining the operating point of a neuron. Elliott T; Kuang X; Shadbolt NR; Zauner KP Network; 2008; 19(3):213-35. PubMed ID: 18946837 [TBL] [Abstract][Full Text] [Related]
7. Hebbian learning in a model with dynamic rate-coded neurons: an alternative to the generative model approach for learning receptive fields from natural scenes. Hamker FH; Wiltschut J Network; 2007 Sep; 18(3):249-66. PubMed ID: 17926194 [TBL] [Abstract][Full Text] [Related]
8. Optimal coding through divisive normalization models of V1 neurons. Valerio R; Navarro R Network; 2003 Aug; 14(3):579-93. PubMed ID: 12938772 [TBL] [Abstract][Full Text] [Related]
9. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Stemmler M; Koch C Nat Neurosci; 1999 Jun; 2(6):521-7. PubMed ID: 10448216 [TBL] [Abstract][Full Text] [Related]
10. Possible mechanisms underlying tilt aftereffect in the primary visual cortex: a critical analysis with the aid of simple computational models. Ursino M; Magosso E; Cuppini C Vision Res; 2008 Jun; 48(13):1456-70. PubMed ID: 18485441 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic versus extrinsic influences in the development of neuronal maps. Elliott T Biol Cybern; 2007 Jan; 96(1):129-43. PubMed ID: 16957951 [TBL] [Abstract][Full Text] [Related]
12. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
13. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560 [TBL] [Abstract][Full Text] [Related]
14. Mathematical model of retinal mosaic formation. Ruggiero C; Benvenuti S; Borchi S; Giacomini M Biosystems; 2004; 76(1-3):113-20. PubMed ID: 15351135 [TBL] [Abstract][Full Text] [Related]
15. Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Steil JJ Neural Netw; 2007 Apr; 20(3):353-64. PubMed ID: 17517491 [TBL] [Abstract][Full Text] [Related]
19. Temporal and spatiotemporal coherence in simple-cell responses: a generative model of natural image sequences. Hurri J; Hyvärinen A Network; 2003 Aug; 14(3):527-51. PubMed ID: 12938770 [TBL] [Abstract][Full Text] [Related]