These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 18194146)
21. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. Schilling L; Matei A; Redkar A; Walbot V; Doehlemann G Mol Plant Pathol; 2014 Oct; 15(8):780-9. PubMed ID: 25346968 [TBL] [Abstract][Full Text] [Related]
22. Assessment of Ustilago maydis as a fungal model for root infection studies. Mazaheri-Naeini M; Sabbagh SK; Martinez Y; Séjalon-Delmas N; Roux C Fungal Biol; 2015 Mar; 119(2-3):145-53. PubMed ID: 25749366 [TBL] [Abstract][Full Text] [Related]
24. Combined analysis of genome-wide expression profiling of maize (Zea mays L.) leaves infected with Ustilago maydis. Wang J; Zhang Y; Du J; Pan X; Ma L; Shao M; Guo X Genome; 2018 Jul; 61(7):505-513. PubMed ID: 29800531 [TBL] [Abstract][Full Text] [Related]
25. In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling. Rodriguez Estrada AE; Hegeman A; Kistler HC; May G Fungal Genet Biol; 2011 Sep; 48(9):874-85. PubMed ID: 21703356 [TBL] [Abstract][Full Text] [Related]
26. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Allen A; Islamovic E; Kaur J; Gold S; Shah D; Smith TJ Plant Biotechnol J; 2011 Oct; 9(8):857-64. PubMed ID: 21303448 [TBL] [Abstract][Full Text] [Related]
27. Maize requires arogenate dehydratase 2 for resistance to Ustilago maydis and plant development. Ren RC; Kong LG; Zheng GM; Zhao YJ; Jiang X; Wu JW; Liu C; Chu J; Ding XH; Zhang XS; Wang GF; Zhao XY Plant Physiol; 2024 May; 195(2):1642-1659. PubMed ID: 38431524 [TBL] [Abstract][Full Text] [Related]
28. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Doehlemann G; Wahl R; Horst RJ; Voll LM; Usadel B; Poree F; Stitt M; Pons-Kühnemann J; Sonnewald U; Kahmann R; Kämper J Plant J; 2008 Oct; 56(2):181-195. PubMed ID: 18564380 [TBL] [Abstract][Full Text] [Related]
29. Establishment of compatibility in the Ustilago maydis/maize pathosystem. Doehlemann G; Wahl R; Vranes M; de Vries RP; Kämper J; Kahmann R J Plant Physiol; 2008 Jan; 165(1):29-40. PubMed ID: 17905472 [TBL] [Abstract][Full Text] [Related]
30. Signal peptide peptidase activity connects the unfolded protein response to plant defense suppression by Ustilago maydis. Pinter N; Hach CA; Hampel M; Rekhter D; Zienkiewicz K; Feussner I; Poehlein A; Daniel R; Finkernagel F; Heimel K PLoS Pathog; 2019 Apr; 15(4):e1007734. PubMed ID: 30998787 [TBL] [Abstract][Full Text] [Related]
31. The Resistance of Maize to Huang Y; Li Y; Zou K; Wang Y; Ma Y; Meng D; Luo H; Qu J; Li F; Xuan Y; Du W Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834187 [TBL] [Abstract][Full Text] [Related]
32. Dissection of the Complex Transcription and Metabolism Regulation Networks Associated with Maize Resistance to Ruan X; Ma L; Zhang Y; Wang Q; Gao X Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828395 [TBL] [Abstract][Full Text] [Related]
33. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis. Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169 [TBL] [Abstract][Full Text] [Related]
34. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Ma LS; Wang L; Trippel C; Mendoza-Mendoza A; Ullmann S; Moretti M; Carsten A; Kahnt J; Reissmann S; Zechmann B; Bange G; Kahmann R Nat Commun; 2018 Apr; 9(1):1711. PubMed ID: 29703884 [TBL] [Abstract][Full Text] [Related]
35. Genome-Wide Characterization of the Maize ( Wang Y; Li W; Qu J; Li F; Du W; Weng J Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834371 [TBL] [Abstract][Full Text] [Related]
36. Maize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells. Woriedh M; Merkl R; Dresselhaus T J Exp Bot; 2015 Aug; 66(17):5205-16. PubMed ID: 26071527 [TBL] [Abstract][Full Text] [Related]
37. [Parasitic strategy and regulation mechanism of Ustilago maydis - A review]. Li Z; Yan L; Yan Z Wei Sheng Wu Xue Bao; 2016 Sep; 56(9):1385-97. PubMed ID: 29738207 [TBL] [Abstract][Full Text] [Related]
38. Mapping QTLs contributing to Ustilago maydis resistance in specific plant tissues of maize. Baumgarten AM; Suresh J; May G; Phillips RL Theor Appl Genet; 2007 May; 114(7):1229-38. PubMed ID: 17468806 [TBL] [Abstract][Full Text] [Related]
39. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations. Kellner R; Hanschke C; Begerow D PLoS One; 2014; 9(6):e98837. PubMed ID: 24887029 [TBL] [Abstract][Full Text] [Related]
40. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings. Karakkat BB; Gold SE; Covert SF Fungal Genet Biol; 2013 Dec; 61():111-9. PubMed ID: 24064149 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]