BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 18194661)

  • 21. Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells.
    Luo X; Hill M; Johnson A; Latunde-Dada GO
    Biochim Biophys Acta; 2014 Jan; 1840(1):106-12. PubMed ID: 23981688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low temperature EPR and MCD studies on cytochrome b-558 of the Bacillus subtilis succinate: quinone oxidoreductase indicate bis-histidine coordination of the heme iron.
    Fridén H; Cheesman MR; Hederstedt L; Andersson KK; Thomson AJ
    Biochim Biophys Acta; 1990 Nov; 1041(2):207-15. PubMed ID: 2176107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro.
    Wyman S; Simpson RJ; McKie AT; Sharp PA
    FEBS Lett; 2008 Jun; 582(13):1901-6. PubMed ID: 18498772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate:menaquinone reductase.
    Hägerhäll C; Fridén H; Aasa R; Hederstedt L
    Biochemistry; 1995 Sep; 34(35):11080-9. PubMed ID: 7669765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional and structural roles of residues in the third extramembrane segment of adrenal cytochrome b561.
    Liu W; da Silva GF; Wu G; Palmer G; Tsai AL; Kulmacz RJ
    Biochemistry; 2011 Apr; 50(15):3149-60. PubMed ID: 21401125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Arabidopsis cytochrome b561 with trans-membrane ferrireductase capability.
    Bérczi A; Su D; Asard H
    FEBS Lett; 2007 Apr; 581(7):1505-8. PubMed ID: 17376442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and characterization of bovine adrenal cytochrome b561 expressed in insect and yeast cell systems.
    Liu W; Kamensky Y; Kakkar R; Foley E; Kulmacz RJ; Palmer G
    Protein Expr Purif; 2005 Apr; 40(2):429-39. PubMed ID: 15766887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of the Escherichia coli cytochrome b562 to an archetype cytochrome b: a mutant with bis-histidine ligation of heme iron.
    Hay S; Wydrzynski T
    Biochemistry; 2005 Jan; 44(1):431-9. PubMed ID: 15628885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a bacterial system for high yield expression of fully functional adrenal cytochrome b561.
    Liu W; Rogge CE; Kamensky Y; Tsai AL; Kulmacz RJ
    Protein Expr Purif; 2007 Dec; 56(2):145-52. PubMed ID: 17521920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heme axial ligation by the highly conserved His residues in helix II of cytochrome b (NarI) of Escherichia coli nitrate reductase A.
    Magalon A; Lemesle-Meunier D; Rothery RA; Frixon C; Weiner JH; Blasco F
    J Biol Chem; 1997 Oct; 272(41):25652-8. PubMed ID: 9325288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ascorbate inhibits the carbethoxylation of two histidyl and one tyrosyl residues indispensable for the transmembrane electron transfer reaction of cytochrome b561.
    Takeuchi F; Kobayashi K; Tagawa S; Tsubaki M
    Biochemistry; 2001 Apr; 40(13):4067-76. PubMed ID: 11300787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quercetin is a substrate for the transmembrane oxidoreductase Dcytb.
    Vlachodimitropoulou E; Naftalin RJ; Sharp PA
    Free Radic Biol Med; 2010 May; 48(10):1366-9. PubMed ID: 20184953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic evidence of the role of an axial ligand histidinate in the mechanism of adrenal cytochrome b561.
    da Silva GF; Shinkarev VP; Kamensky YA; Palmer G
    Biochemistry; 2012 Nov; 51(44):8730-42. PubMed ID: 23088392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for an essential histidine residue in the ascorbate-binding site of cytochrome b561.
    Kipp BH; Kelley PM; Njus D
    Biochemistry; 2001 Apr; 40(13):3931-7. PubMed ID: 11300772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of an ascorbate-dependent cytochrome b of the tonoplast membrane sharing biochemical features with members of the cytochrome b561 family.
    Preger V; Scagliarini S; Pupillo P; Trost P
    Planta; 2005 Jan; 220(3):365-75. PubMed ID: 15365836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation.
    Stein N; Love D; Judd ET; Elliott SJ; Bennett B; Pacheco AA
    Biochemistry; 2015 Jun; 54(24):3749-58. PubMed ID: 26042961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of insect and human cytochrome b561 proteins: Insights into candidate ferric reductases in insects.
    Holst JD; Murphy LG; Gorman MJ; Ragan EJ
    PLoS One; 2023; 18(12):e0291564. PubMed ID: 38039324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectral characterization of the recombinant mouse tumor suppressor 101F6 protein.
    Bérczi A; Desmet F; Van Doorslaer S; Asard H
    Eur Biophys J; 2010 Jul; 39(8):1129-42. PubMed ID: 19943161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of the conserved lysine 83 residue of Zea mays cytochrome b(561) for ascorbate-specific transmembrane electron transfer as revealed by site-directed mutagenesis studies.
    Nakanishi N; Rahman MM; Sakamoto Y; Takigami T; Kobayashi K; Hori H; Hase T; Park SY; Tsubaki M
    Biochemistry; 2009 Nov; 48(44):10665-78. PubMed ID: 19803484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.