These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 18194876)

  • 1. Estimating the joint disease outbreak-detection time when an automated biosurveillance system is augmenting traditional clinical case finding.
    Shen Y; Adamou C; Dowling JN; Cooper GF
    J Biomed Inform; 2008 Apr; 41(2):224-31. PubMed ID: 18194876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-ALIRT biosurveillance detection algorithm evaluation.
    Siegrist D; Pavlin J
    MMWR Suppl; 2004 Sep; 53():152-8. PubMed ID: 15714645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outbreak detection through automated surveillance: a review of the determinants of detection.
    Buckeridge DL
    J Biomed Inform; 2007 Aug; 40(4):370-9. PubMed ID: 17095301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of an automated surveillance-data-analysis system in a laboratory-based early-warning system for detection of an abortion outbreak in mares.
    Odoi A; Carter CN; Riley JW; Smith JL; Dwyer RM
    Am J Vet Res; 2009 Feb; 70(2):247-56. PubMed ID: 19231958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Syndromic surveillance in circumstances of bioterrorism threat--the essence, application abilities and superiority over a traditional epidemiological surveillance].
    Osemek P; Kocik J; Paśnik K
    Pol Merkur Lekarski; 2009 Dec; 27(162):535-40. PubMed ID: 20120725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for rapid outbreak detection: a research synthesis.
    Buckeridge DL; Burkom H; Campbell M; Hogan WR; Moore AW
    J Biomed Inform; 2005 Apr; 38(2):99-113. PubMed ID: 15797000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a syndromic surveillance system using the WSARE algorithm for early detection of an unusual, localized summer outbreak of influenza B: implications for bioterrorism surveillance.
    Kaufman Z; Wong WK; Peled-Leviatan T; Cohen E; Lavy C; Aharonowitz G; Dichtiar R; Bromberg M; Havkin O; Kokia E; Green MS
    Isr Med Assoc J; 2007 Jan; 9(1):3-7. PubMed ID: 17274346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the response to surveillance alerts in automated surveillance systems.
    Izadi M; Buckeridge DL
    Stat Med; 2011 Feb; 30(5):442-54. PubMed ID: 21290402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation model for syndromic surveillance: assessing the performance of a temporal algorithm.
    Buckeridge DL; Switzer P; Owens D; Siegrist D; Pavlin J; Musen M
    MMWR Suppl; 2005 Aug; 54():109-15. PubMed ID: 16177701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches to the evaluation of outbreak detection methods.
    Watkins RE; Eagleson S; Hall RG; Dailey L; Plant AJ
    BMC Public Health; 2006 Oct; 6():263. PubMed ID: 17059615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting automated syndromic surveillance.
    Wang L; Ramoni MF; Mandl KD; Sebastiani P
    Artif Intell Med; 2005 Jul; 34(3):269-78. PubMed ID: 16023563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of cumulative sum control chart algorithm in the detection of infectious disease outbreaks].
    Zhang HL; Lai SJ; Li ZJ; Lan YJ; Yang WZ
    Zhonghua Liu Xing Bing Xue Za Zhi; 2010 Dec; 31(12):1406-9. PubMed ID: 21223675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-syndrome analysis of time series using PCA: a new concept for outbreak investigation.
    Mohtashemi M; Kleinman K; Yih WK
    Stat Med; 2007 Dec; 26(29):5203-24. PubMed ID: 17476653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surveillance for early detection and monitoring of infectious disease outbreaks associated with bioterrorism.
    Green MS; Kaufman Z
    Isr Med Assoc J; 2002 Jul; 4(7):503-6. PubMed ID: 12120460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a data-adaptive alerting algorithm for univariate temporal biosurveillance data.
    Elbert Y; Burkom HS
    Stat Med; 2009 Nov; 28(26):3226-48. PubMed ID: 19725023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombinant temporal aberration detection algorithms for enhanced biosurveillance.
    Murphy SP; Burkom H
    J Am Med Inform Assoc; 2008; 15(1):77-86. PubMed ID: 17947614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian prediction of an epidemic curve.
    Jiang X; Wallstrom G; Cooper GF; Wagner MM
    J Biomed Inform; 2009 Feb; 42(1):90-9. PubMed ID: 18593605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate Bayesian modeling of known and unknown causes of events--an application to biosurveillance.
    Shen Y; Cooper GF
    Comput Methods Programs Biomed; 2012 Sep; 107(3):436-46. PubMed ID: 21195503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparison between early outbreak detection models and simulated outbreaks of measles in Beijing].
    Wang XL; Wang QY; Liu DL; Zeng DJ; Cheng H; Li S; Duan W; Li XY; Luan RS; He X
    Zhonghua Liu Xing Bing Xue Za Zhi; 2009 Feb; 30(2):159-62. PubMed ID: 19565878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of data aggregation in biosurveillance detection strategies with applications from ESSENCE.
    Burkom HS; Elbert Y; Feldman A; Lin J
    MMWR Suppl; 2004 Sep; 53():67-73. PubMed ID: 15714632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.