BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 18195081)

  • 81. Effect of tropomyosin on the interactions of actin with actin-binding proteins isolated from pig platelets.
    Prulière G; d'Albis A; der Terrossian E
    Eur J Biochem; 1986 Sep; 159(3):535-47. PubMed ID: 3019696
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Single particle analysis of relaxed and activated muscle thin filaments.
    Pirani A; Xu C; Hatch V; Craig R; Tobacman LS; Lehman W
    J Mol Biol; 2005 Feb; 346(3):761-72. PubMed ID: 15713461
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Purification of tropomyosin Br-3 and 5NM1 and characterization of their interactions with actin.
    Kis-Bicskei N; Vig A; Nyitrai M; Bugyi B; Talián GC
    Cytoskeleton (Hoboken); 2013 Nov; 70(11):755-65. PubMed ID: 24124168
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Beta-tropomyosin overexpression induces severe cardiac abnormalities.
    Muthuchamy M; Boivin GP; Grupp IL; Wieczorek DF
    J Mol Cell Cardiol; 1998 Aug; 30(8):1545-57. PubMed ID: 9737941
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Assembly of different isoforms of actin and tropomyosin into the skeletal tropomyosin-enriched microfilaments during differentiation of muscle cells in vitro.
    Lin JJ; Lin JL
    J Cell Biol; 1986 Dec; 103(6 Pt 1):2173-83. PubMed ID: 3536961
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Vertebrate tropomyosin: distribution, properties and function.
    Perry SV
    J Muscle Res Cell Motil; 2001; 22(1):5-49. PubMed ID: 11563548
    [TBL] [Abstract][Full Text] [Related]  

  • 87. N terminus is essential for tropomyosin functions: N-terminal modification disrupts stress fiber organization and abolishes anti-oncogenic effects of tropomyosin-1.
    Bharadwaj S; Hitchcock-DeGregori S; Thorburn A; Prasad GL
    J Biol Chem; 2004 Apr; 279(14):14039-48. PubMed ID: 14722123
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Tropomyosin isoforms from the gamma gene differing at the C-terminus are spatially and developmentally regulated in the brain.
    Vrhovski B; Schevzov G; Dingle S; Lessard JL; Gunning P; Weinberger RP
    J Neurosci Res; 2003 May; 72(3):373-83. PubMed ID: 12692904
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Introduction and historical perspective.
    Gunning P
    Adv Exp Med Biol; 2008; 644():1-5. PubMed ID: 19209809
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Isoform sorting of tropomyosins.
    Martin C; Gunning P
    Adv Exp Med Biol; 2008; 644():187-200. PubMed ID: 19209823
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Thin filament-mediated regulation of cardiac contraction.
    Tobacman LS
    Annu Rev Physiol; 1996; 58():447-81. PubMed ID: 8815803
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Structure, assembly, and dynamics of actin filaments in situ and in vitro.
    Schoenenberger CA; Steinmetz MO; Stoffler D; Mandinova A; Aebi U
    Microsc Res Tech; 1999 Oct; 47(1):38-50. PubMed ID: 10506760
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Assembly of tropomyosin isoforms into the cytoskeleton of avian muscle cells.
    L'Ecuyer TJ; Noller JA; Fulton AB
    Pediatr Res; 1998 Jun; 43(6):813-22. PubMed ID: 9621993
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Purification of tropomyosin from bovine adrenal medulla and its inhibitory effect on the actin severing activity of adseverin (adrenal medulla 74 kDa actin severing protein).
    Maekawa S; Toriyama M
    Biochem Mol Biol Int; 1994 Jul; 33(4):661-8. PubMed ID: 7981653
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms.
    Hardeman EC; Bryce NS; Gunning PW
    Semin Cell Dev Biol; 2020 Jun; 102():122-131. PubMed ID: 31630997
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mechanisms of actin filament turnover in animal cells.
    Sheterline P
    Symp Soc Exp Biol; 1993; 47():339-52. PubMed ID: 8165575
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Regulation of actin filament turnover by cofilin-1 and cytoplasmic tropomyosin isoforms.
    Ostrowska Z; Robaszkiewicz K; Moraczewska J
    Biochim Biophys Acta Proteins Proteom; 2017 Jan; 1865(1):88-98. PubMed ID: 27693909
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Dual roles of tropomyosin as an F-actin stabilizer and a regulator of muscle contraction in Caenorhabditis elegans body wall muscle.
    Yu R; Ono S
    Cell Motil Cytoskeleton; 2006 Nov; 63(11):659-72. PubMed ID: 16937397
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Unique functional properties of slow skeletal muscle tropomyosin.
    Matyushenko AM; Shchepkin DV; Kopylova GV; Bershitsky SY; Levitsky DI
    Biochimie; 2020 Jul; 174():1-8. PubMed ID: 32224097
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Tropomyosin is a tetramer under physiological salt conditions.
    Lassing I; Hillberg L; Höglund AS; Karlsson R; Schutt C; Lindberg U
    Cytoskeleton (Hoboken); 2010 Sep; 67(9):599-607. PubMed ID: 20658558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.