These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18195219)

  • 21. Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography.
    Skaf M; Bernardes AB; Cardillo JA; Costa RA; Melo LA; Castro JC; Varma R
    Eye (Lond); 2006 Apr; 20(4):431-9. PubMed ID: 16052259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between optic nerve head parameters and retinal nerve fibre layer thickness measured by spectral-domain optical coherence tomography in myopic eyes.
    Hwang YH; Kim YY
    Clin Exp Ophthalmol; 2012; 40(7):713-20. PubMed ID: 22429807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Posterior Vitreous Structures Evaluated by Swept-source Optical Coherence Tomography with En Face Imaging.
    Park JW; Lee JE; Pak KY
    Korean J Ophthalmol; 2018 Oct; 32(5):376-381. PubMed ID: 30311460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.
    Reznicek L; Klein T; Wieser W; Kernt M; Wolf A; Haritoglou C; Kampik A; Huber R; Neubauer AS
    Graefes Arch Clin Exp Ophthalmol; 2014 Jun; 252(6):1009-16. PubMed ID: 24789467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II.
    Iliev ME; Meyenberg A; Garweg JG
    Eye (Lond); 2006 Nov; 20(11):1288-99. PubMed ID: 16179933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo corneal high-speed, ultra high-resolution optical coherence tomography.
    Christopoulos V; Kagemann L; Wollstein G; Ishikawa H; Gabriele ML; Wojtkowski M; Srinivasan V; Fujimoto JG; Duker JS; Dhaliwal DK; Schuman JS
    Arch Ophthalmol; 2007 Aug; 125(8):1027-35. PubMed ID: 17698748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of patient specific information in the wild on fundus photography and optical coherence tomography.
    Munk MR; Kurmann T; Márquez-Neila P; Zinkernagel MS; Wolf S; Sznitman R
    Sci Rep; 2021 Apr; 11(1):8621. PubMed ID: 33883573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy.
    Leung CK; Cheng AC; Chong KK; Leung KS; Mohamed S; Lau CS; Cheung CY; Chu GC; Lai RY; Pang CC; Lam DS
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3178-83. PubMed ID: 17591887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph.
    Leung CK; Ye C; Weinreb RN; Cheung CY; Qiu Q; Liu S; Xu G; Lam DS
    Ophthalmology; 2010 Feb; 117(2):267-74. PubMed ID: 19969364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of peripapillary atrophy on the diagnostic ability of Stratus and Cirrus OCT in the analysis of optic nerve head parameters and disc size.
    Kim SY; Park HY; Park CK
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4475-84. PubMed ID: 22618588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-sectional anatomic configurations of peripapillary atrophy evaluated with spectral domain-optical coherence tomography.
    Lee KY; Tomidokoro A; Sakata R; Konno S; Mayama C; Saito H; Hayashi K; Iwase A; Araie M
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):666-71. PubMed ID: 19850838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of motion artifacts and scan circle displacements on Cirrus HD-OCT retinal nerve fiber layer thickness measurements.
    Taibbi G; Peterson GC; Syed MF; Vizzeri G
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2251-8. PubMed ID: 24627143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography.
    Wessel JM; Horn FK; Tornow RP; Schmid M; Mardin CY; Kruse FE; Juenemann AG; Laemmer R
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3613-20. PubMed ID: 23633657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Errors in neuroretinal rim measurement by Cirrus high-definition optical coherence tomography in myopic eyes.
    Hwang YH; Kim YY; Jin S; Na JH; Kim HK; Sohn YH
    Br J Ophthalmol; 2012 Nov; 96(11):1386-90. PubMed ID: 22942160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnification characteristics of the Optical Coherence Tomograph STRATUS OCT 3000.
    Sanchez-Cano A; Baraibar B; Pablo LE; Honrubia FM
    Ophthalmic Physiol Opt; 2008 Jan; 28(1):21-8. PubMed ID: 18201332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Longitudinal evaluation of optic disc measurement variability with optical coherence tomography and confocal scanning laser ophthalmoscopy.
    Lin D; Leung CK; Weinreb RN; Cheung CY; Li H; Lam DS
    J Glaucoma; 2009 Feb; 18(2):101-6. PubMed ID: 19225344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic computer-aided analysis of optic disc pallor in fundus photographs.
    Yang HK; Oh JE; Han SB; Kim KG; Hwang JM
    Acta Ophthalmol; 2019 Jun; 97(4):e519-e525. PubMed ID: 30407733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the clinical disc margin seen in stereo disc photographs with neural canal opening seen in optical coherence tomography images.
    Young M; Lee S; Rateb M; Beg MF; Sarunic MV; Mackenzie PJ
    J Glaucoma; 2014 Aug; 23(6):360-7. PubMed ID: 25075462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disagreement between Heidelberg Retina Tomograph and optical coherence tomography in assessing optic nerve head configuration of eyes with band atrophy and normal eyes.
    Nagai-Kusuhara A; Nakamura M; Tatsumi Y; Nakanishi Y; Negi A
    Br J Ophthalmol; 2008 Oct; 92(10):1382-6. PubMed ID: 18662917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinal Nerve Fiber Layer Converges More Convexly on Normal Smaller Optic Nerve Head.
    Jung KI; Shin JA; Park HY; Park CK
    J Glaucoma; 2015 Aug; 24(6):448-54. PubMed ID: 25943725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.