BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18195355)

  • 41. Bacillus subtilis glnR mutants defective in regulation.
    Schreier HJ; Rostkowski CA
    Gene; 1995 Aug; 161(1):51-6. PubMed ID: 7642136
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and characterization of a protein with high affinity for DNA: the glutamine synthetase of Thermus thermophilus 111.
    Mary J; Révet B
    J Mol Biol; 1999 Feb; 286(1):121-34. PubMed ID: 9931254
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR.
    Amon J; Bräu T; Grimrath A; Hänssler E; Hasselt K; Höller M; Jessberger N; Ott L; Szököl J; Titgemeyer F; Burkovski A
    J Bacteriol; 2008 Nov; 190(21):7108-16. PubMed ID: 18689485
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inactivation of the general transcription factor TnrA in Bacillus subtilis by proteolysis.
    Kayumov A; Heinrich A; Sharipova M; Iljinskaya O; Forchhammer K
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2348-2355. PubMed ID: 18667567
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Precise characterization of GlnR Box in actinomycetes.
    Wang J; Wang Y; Zhao GP
    Biochem Biophys Res Commun; 2015 Mar; 458(3):605-607. PubMed ID: 25684190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Streptomyces coelicolor glnR gene encodes a protein similar to other bacterial response regulators.
    Wray LV; Fisher SH
    Gene; 1993 Aug; 130(1):145-50. PubMed ID: 7688332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase.
    Belitsky BR; Sonenshein AL
    J Bacteriol; 2004 Jun; 186(11):3399-407. PubMed ID: 15150225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NtcA represses transcription of gifA and gifB, genes that encode inhibitors of glutamine synthetase type I from Synechocystis sp. PCC 6803.
    García-Domínguez M; Reyes JC; Florencio FJ
    Mol Microbiol; 2000 Mar; 35(5):1192-201. PubMed ID: 10712699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Regulation of nitrogen metabolism in gram-positive bacteria].
    Doroshchuk NA; Gel'fand MS; Rodionov DA
    Mol Biol (Mosk); 2006; 40(5):919-26. PubMed ID: 17086994
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis.
    Atkinson MR; Fisher SH
    J Bacteriol; 1991 Jan; 173(1):23-7. PubMed ID: 1670935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis.
    Licht A; Golbik R; Brantl S
    J Mol Biol; 2008 Jun; 380(1):17-30. PubMed ID: 18511073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequence of the Bacillus subtilis glutamine synthetase gene region.
    Strauch MA; Aronson AI; Brown SW; Schreier HJ; Sonenhein AL
    Gene; 1988 Nov; 71(2):257-65. PubMed ID: 2906311
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor.
    Sola-Landa A; Rodríguez-García A; Amin R; Wohlleben W; Martín JF
    Nucleic Acids Res; 2013 Feb; 41(3):1767-82. PubMed ID: 23248009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of the product of the glnF gene in the autogenous regulation of glutamine synthetase formation in Klebsiella aerogenes.
    Gaillardin CM; Magasanik B
    J Bacteriol; 1978 Mar; 133(3):1329-38. PubMed ID: 25264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification and analysis of DNA-binding transcription factors in Bacillus subtilis and other Firmicutes--a genomic approach.
    Moreno-Campuzano S; Janga SC; Pérez-Rueda E
    BMC Genomics; 2006 Jun; 7():147. PubMed ID: 16772031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of a cis-acting element and a novel trans-acting factor of the glutamine synthetase gene in liver cells.
    Gaunitz F; Weber S; Scheja L; Gebhardt R
    Biochem Biophys Res Commun; 2001 Jun; 284(2):377-83. PubMed ID: 11394889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Nitrogen assimilation enzymes in Bacillus subtilis mutants with hyperproduction of riboflavin].
    Gershanovich VN; Bol'shakova TN; Dobrynina OIu; Galushkina ZM; Kukanova AIa; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2005; (3):29-34. PubMed ID: 16173396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glutamine synthetase and glutamate synthase activities during growth and sporulation in Bacillus subtilis.
    Pan FL; Coote JG
    J Gen Microbiol; 1979 Jun; 112(2):373-7. PubMed ID: 39113
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism.
    Murray DS; Chinnam N; Tonthat NK; Whitfill T; Wray LV; Fisher SH; Schumacher MA
    J Biol Chem; 2013 Dec; 288(50):35801-11. PubMed ID: 24158439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [The C-terminus of transcription factor TnrA from Bacillus subtilis controls DNA-binding domain activity but is not required for dimerization].
    Fedorova KP; Sharafutdinov IS; Turbina EIu; Bogachev MI; Il'inskaia ON; Kaiumov AR
    Mol Biol (Mosk); 2013; 47(2):331-7. PubMed ID: 23808168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.