These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18195745)

  • 1. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency.
    Hoge FE; Swift RN
    Appl Opt; 1983 Jan; 22(1):37-47. PubMed ID: 18195745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute oil fluorescence conversion efficiency.
    Kung RT; Itzkan I
    Appl Opt; 1976 Feb; 15(2):409-15. PubMed ID: 20164982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Experimental Methods and Result Analysis of a Variety of Spectral Reflectance Properties of the Thin Oil Film].
    Ye Z; Liu L; Wei CX; Gu Q; An PA; Zhao YJ; Yin DY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1695-9. PubMed ID: 26601392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil film thickness measurement using airborne laser-induced water Raman backscatter.
    Hoge FE; Swift RN
    Appl Opt; 1980 Oct; 19(19):3269-81. PubMed ID: 20234606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter.
    Hoge FE; Swift RN
    Appl Opt; 1981 Apr; 20(7):1191-202. PubMed ID: 20309284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of airborne oil thickness measurements.
    Brown CE; Fingas MF
    Mar Pollut Bull; 2003; 47(9-12):485-92. PubMed ID: 12899892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of thickness of highly inhomogeneous crude oil slicks.
    Cheemalapati S; Forth HP; Wang H; Konnaiyan KR; Morris JM; Pyayt AL
    Appl Opt; 2017 Apr; 56(11):E72-E76. PubMed ID: 28414344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance modeling of an airborne Raman water-vapor lidar.
    Whiteman DN; Schwemmer G; Berkoff T; Plotkin H; Ramos-Izquierdo L; Pappalardo G
    Appl Opt; 2001 Jan; 40(3):375-90. PubMed ID: 18357011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spreading of waxy oils on calm water.
    Brönner U; Johansen Ø; Leirvik F; Nordam T; Sørheim KR
    Mar Pollut Bull; 2018 Apr; 129(1):135-141. PubMed ID: 29680530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet-induced fluorescence of oil spill recognition using a semi-supervised algorithm based on thickness and mixing proportion-emission matrices.
    Gong B; Zhang H; Wang X; Lian K; Li X; Chen B; Wang H; Niu X
    Anal Methods; 2023 Mar; 15(13):1649-1660. PubMed ID: 36917485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Depth-Adaptive Waveform Decomposition Method for Airborne LiDAR Bathymetry.
    Xing S; Wang D; Xu Q; Lin Y; Li P; Jiao L; Zhang X; Liu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence Hyperspectral Imaging of Oil Samples and Its Quantitative Applications in Component Analysis and Thickness Estimation.
    Jiang W; Li J; Yao X; Forsberg E; He S
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30551646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter.
    Hoge FE; Swift RN
    Appl Opt; 1983 Dec; 22(23):3778-86. PubMed ID: 18200263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the weathering of Colombian crude oils in the Colombian Caribbean Sea.
    Ramírez J; Merlano A; Lacayo J; Osorio AF; Molina A
    Mar Pollut Bull; 2017 Dec; 125(1-2):367-377. PubMed ID: 28965922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended oil spill spreading with Langmuir circulation.
    Simecek-Beatty D; Lehr WJ
    Mar Pollut Bull; 2017 Sep; 122(1-2):226-235. PubMed ID: 28662982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Airborne Lidar Measurements of a Smoke Plume Produced by a Controlled Burn of Crude Oil on the Ocean.
    Ross JL; Waggoner AP; Hobbs PV; Ferek RJ
    J Air Waste Manag Assoc; 1996 Apr; 46(4):327-334. PubMed ID: 28079483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements.
    Hoge FE; Vodacek A; Swift RN; Yungel JK; Blough NV
    Appl Opt; 1995 Oct; 34(30):7032-8. PubMed ID: 21060564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of automatic marine oil spills detection using imaging spectroscopy].
    Liu DL; Han L; Zhang JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3116-9. PubMed ID: 24555393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of the development of laser fluorosensors for oil spill application.
    Brown CE; Fingas MF
    Mar Pollut Bull; 2003; 47(9-12):477-84. PubMed ID: 12899891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Nitrogen-Containing Polycyclic Aromatic Heterocycles in Crude Oils and Refined Petroleum Products.
    Zhang G; Yang C; Serhan M; Koivu G; Yang Z; Hollebone B; Lambert P; Brown CE
    Adv Mar Biol; 2018; 81():59-96. PubMed ID: 30471659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.