BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 18196303)

  • 1. Production of arachidonic acid and dihomo-gamma-linolenic acid from glycerol by oil-producing filamentous fungi, Mortierella in the ARS culture collection.
    Hou CT
    J Ind Microbiol Biotechnol; 2008 Jun; 35(6):501-6. PubMed ID: 18196303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New bioactive fatty acids.
    Hou CT
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():192-5. PubMed ID: 18296335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial production of dihomo-γ-linolenic acid by Δ5-desaturase gene-disruptants of Mortierella alpina 1S-4.
    Kikukawa H; Sakuradani E; Ando A; Okuda T; Shimizu S; Ogawa J
    J Biosci Bioeng; 2016 Jul; 122(1):22-6. PubMed ID: 26777235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid.
    Kikukawa H; Sakuradani E; Nakatani M; Ando A; Okuda T; Sakamoto T; Ochiai M; Shimizu S; Ogawa J
    Curr Genet; 2015 Nov; 61(4):579-89. PubMed ID: 25782448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of arachidonic acid production by mutants with lower n-3 desaturation activity derived from Mortierella alpina.
    Sakuradani E; Hirano Y; Kamada N; Nojiri M; Ogawa J; Shimizu S
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):243-8. PubMed ID: 15300418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source.
    Hao G; Chen H; Gu Z; Zhang H; Chen W; Chen YQ
    Microb Cell Fact; 2015 Dec; 14():205. PubMed ID: 26701302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of curcumin on fatty acid desaturation in Mortierella alpina 1S-4 and rat liver microsomes.
    Shimizu S; Jareonkitmongkol S; Kawashima H; Akimoto K; Yamada H
    Lipids; 1992 Jul; 27(7):509-12. PubMed ID: 1453881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of oil biosynthesis by an arachidonic acid-producing fungus, Mortierella alpina 1S-4.
    Certik M; Shimizu S
    Appl Microbiol Biotechnol; 2000 Aug; 54(2):224-30. PubMed ID: 10968637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous production of free dihomo-γ-linolenic acid by Aspergillus oryzae and its extracellular release via surfactant supplementation.
    Tamano K; Cox RS; Tsuge K; Miura A; Itoh A; Ishii J; Tamura T; Kondo A; Machida M
    J Biosci Bioeng; 2019 Apr; 127(4):451-457. PubMed ID: 30327168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-tube biosynthesis and extraction of U-
    Qasem RJ
    J Pharmacol Toxicol Methods; 2018; 92():1-12. PubMed ID: 29408384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reengineering lipid biosynthetic pathways of Aspergillus oryzae for enhanced production of γ-linolenic acid and dihomo-γ-linolenic acid.
    Jeennor S; Anantayanon J; Panchanawaporn S; Khoomrung S; Chutrakul C; Laoteng K
    Gene; 2019 Jul; 706():106-114. PubMed ID: 31039437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligounsaturated fatty acid production by selected strains of micromycetes.
    Stredanská S; Sajbidor J
    Folia Microbiol (Praha); 1992; 37(5):357-9. PubMed ID: 1337332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of pH, aeration, and temperature on arachidonic acid synthesis by Mortierella alpina].
    Dedyukhina EG; Chistyakova TI; Mironov AA; Kamzolova SV; Minkevich IG; Vainshtein MB
    Prikl Biokhim Mikrobiol; 2015; 51(2):243-50. PubMed ID: 26027361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glutamate on arachidonic acid production from Mortierella alpina.
    Lan WZ; Qin WM; Yu LJ
    Lett Appl Microbiol; 2002; 35(4):357-60. PubMed ID: 12358703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of 5,8,11-eicosatrienoic acid by a delta5 and delta6 desaturation activity-enhanced mutant derived from a delta12 desaturation activity-defective mutant of Mortierella alpina 1S-4.
    Sakuradani E; Kamada N; Hirano Y; Nishihara M; Kawashima H; Akimoto K; Higashiyama K; Ogawa J; Shimizu S
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):281-7. PubMed ID: 12436308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolating Mortierella alpina strains of high yield of arachidonic acid.
    Zhu M; Yu LJ; Liu Z; Xu HB
    Lett Appl Microbiol; 2004; 39(4):332-5. PubMed ID: 15355534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyunsaturated fatty acids (PUFAs) content of the fungus Mortierella alpina isolated from soil.
    Ho SY; Jiang Y; Chen F
    J Agric Food Chem; 2007 May; 55(10):3960-6. PubMed ID: 17439233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding.
    Sakuradani E; Ando A; Ogawa J; Shimizu S
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):1-10. PubMed ID: 19565237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid Fraction and Intracellular Metabolite Analysis Reveal the Mechanism of Arachidonic Acid-Rich Oil Accumulation in the Aging Process of Mortierella alpina.
    Zhang AH; Ji XJ; Wu WJ; Ren LJ; Yu YD; Huang H
    J Agric Food Chem; 2015 Nov; 63(44):9812-9. PubMed ID: 26482338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved arachidonic acids production from the fungus Mortierella alpina by glutamate supplementation.
    Yu LJ; Qin WM; Lan WZ; Zhou PP; Zhu M
    Bioresour Technol; 2003 Jul; 88(3):265-8. PubMed ID: 12618051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.