These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

670 related articles for article (PubMed ID: 18196533)

  • 1. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I.
    Ye Z; Zhang H; Luo H; Wang S; Zhou Q; DU X; Tang C; Chen L; Liu J; Shi YK; Zhang EY; Ellis-Behnke R; Zhao X
    J Pept Sci; 2008 Feb; 14(2):152-62. PubMed ID: 18196533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural control of self-assembled nanofibers by artificial beta-sheet peptides composed of D- or L-isomer.
    Koga T; Matsuoka M; Higashi N
    J Am Chem Soc; 2005 Dec; 127(50):17596-7. PubMed ID: 16351076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release.
    Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T
    J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembly of nanofiber with uniform width from wheel-type trigonal-beta-sheet-forming peptide.
    Murasato K; Matsuura K; Kimizuka N
    Biomacromolecules; 2008 Mar; 9(3):913-8. PubMed ID: 18288799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled self-assembly of amphiphilic oligopeptides into shape-specific nanoarchitectures.
    Koga T; Higuchi M; Kinoshita T; Higashi N
    Chemistry; 2006 Feb; 12(5):1360-7. PubMed ID: 16163755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein interactions and misfolding analyzed by AFM force spectroscopy.
    McAllister C; Karymov MA; Kawano Y; Lushnikov AY; Mikheikin A; Uversky VN; Lyubchenko YL
    J Mol Biol; 2005 Dec; 354(5):1028-42. PubMed ID: 16290901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure.
    Dong H; Paramonov SE; Aulisa L; Bakota EL; Hartgerink JD
    J Am Chem Soc; 2007 Oct; 129(41):12468-72. PubMed ID: 17894489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and stability of nanofibers from a milk-derived peptide.
    Guy MM; Tremblay M; Voyer N; Gauthier SF; Pouliot Y
    J Agric Food Chem; 2011 Jan; 59(2):720-6. PubMed ID: 21182295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of self-assembling D-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis.
    Luo Z; Wang S; Zhang S
    Biomaterials; 2011 Mar; 32(8):2013-20. PubMed ID: 21167593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape-specific nanofibers via self-assembly of three-branched peptide.
    Koga T; Matsui H; Matsumoto T; Higashi N
    J Colloid Interface Sci; 2011 Jun; 358(1):81-5. PubMed ID: 21429499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A recipe for designing water-soluble, beta-sheet-forming peptides.
    Mayo KH; Ilyina E; Park H
    Protein Sci; 1996 Jul; 5(7):1301-15. PubMed ID: 8819163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional self-assembly of a rational designed beta-structure peptide.
    Wang C; Huang L; Wang L; Hong Y; Sha Y
    Biopolymers; 2007 May; 86(1):23-31. PubMed ID: 17216631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of peptide-amphiphile C12-Abeta(11-17) into nanofibrils.
    Deng M; Yu D; Hou Y; Wang Y
    J Phys Chem B; 2009 Jun; 113(25):8539-44. PubMed ID: 19534562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails.
    Xu XD; Jin Y; Liu Y; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):329-35. PubMed ID: 20678903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies on the self-assembling behaviors of cationic and catanionic surfactant-like peptides.
    Qiu F; Chen Y; Zhao X
    J Colloid Interface Sci; 2009 Aug; 336(2):477-84. PubMed ID: 19447403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs.
    Sun L; Zhao X
    Int J Nanomedicine; 2012; 7():571-80. PubMed ID: 22346352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion effect on the nanostructure of a metal ion binding self-assembling peptide.
    Yang H; Pritzker M; Fung SY; Sheng Y; Wang W; Chen P
    Langmuir; 2006 Sep; 22(20):8553-62. PubMed ID: 16981775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of peptide sequence on surface properties and self-assembly of an amphiphilic pH-responsive peptide.
    Shera JN; Sun XS
    Biomacromolecules; 2009 Sep; 10(9):2446-50. PubMed ID: 19642669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.