These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18196960)

  • 1. Ulp2 and the DNA damage response: desumoylation enables safe passage through mitosis.
    Felberbaum R; Hochstrasser M
    Cell Cycle; 2008 Jan; 7(1):52-6. PubMed ID: 18196960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint.
    Schwartz DC; Felberbaum R; Hochstrasser M
    Mol Cell Biol; 2007 Oct; 27(19):6948-61. PubMed ID: 17664284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast SUMO isopeptidase Smt4/Ulp2 and the polo kinase Cdc5 act in an opposing fashion to regulate sumoylation in mitosis and cohesion at centromeres.
    Baldwin ML; Julius JA; Tang X; Wang Y; Bachant J
    Cell Cycle; 2009 Oct; 8(20):3406-19. PubMed ID: 19823017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein.
    Li SJ; Hochstrasser M
    Mol Cell Biol; 2000 Apr; 20(7):2367-77. PubMed ID: 10713161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy.
    Ryu HY; Wilson NR; Mehta S; Hwang SS; Hochstrasser M
    Genes Dev; 2016 Aug; 30(16):1881-94. PubMed ID: 27585592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential role of nuclear localization for yeast Ulp2 SUMO protease function.
    Kroetz MB; Su D; Hochstrasser M
    Mol Biol Cell; 2009 Apr; 20(8):2196-206. PubMed ID: 19225149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic evidence that polysumoylation bypasses the need for a SUMO-targeted Ub ligase.
    Mullen JR; Das M; Brill SJ
    Genetics; 2011 Jan; 187(1):73-87. PubMed ID: 21059884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUMO-Chain-Regulated Proteasomal Degradation Timing Exemplified in DNA Replication Initiation.
    Psakhye I; Castellucci F; Branzei D
    Mol Cell; 2019 Nov; 76(4):632-645.e6. PubMed ID: 31519521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the checkpoint response to telomere uncapping in budding yeast.
    Proctor CJ; Lydall DA; Boys RJ; Gillespie CS; Shanley DP; Wilkinson DJ; Kirkwood TB
    J R Soc Interface; 2007 Feb; 4(12):73-90. PubMed ID: 17015293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae.
    Gillies J; Hickey CM; Su D; Wu Z; Peng J; Hochstrasser M
    Genetics; 2016 Apr; 202(4):1377-94. PubMed ID: 26837752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stopped for repairs: a new role for nutrient sensing pathways?
    Searle JS; Sanchez Y
    Cell Cycle; 2004 Jul; 3(7):865-8. PubMed ID: 15190205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new SUMO ligase in the DNA damage response.
    Lee KM; O'Connell MJ
    DNA Repair (Amst); 2006 Jan; 5(1):138-41. PubMed ID: 16198156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO.
    Ulrich HD
    Chembiochem; 2005 Oct; 6(10):1735-43. PubMed ID: 16142820
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of SUMO modification sites in the base excision repair protein, Ntg1.
    Swartzlander DB; McPherson AJ; Powers HR; Limpose KL; Kuiper EG; Degtyareva NP; Corbett AH; Doetsch PW
    DNA Repair (Amst); 2016 Dec; 48():51-62. PubMed ID: 27839712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain.
    Grenon M; Costelloe T; Jimeno S; O'Shaughnessy A; Fitzgerald J; Zgheib O; Degerth L; Lowndes NF
    Yeast; 2007 Feb; 24(2):105-19. PubMed ID: 17243194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Saccharomyces cerevisiae RAD17 and CHK1 checkpoint genes in the repair of double-strand breaks in cycling cells.
    Bracesco N; Candreva EC; Keszenman D; Sánchez AG; Soria S; Dell M; Siede W; Nunes E
    Radiat Environ Biophys; 2007 Nov; 46(4):401-7. PubMed ID: 17624540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage signaling.
    Yam CQX; Chia DB; Shi I; Lim HH; Surana U
    Nucleic Acids Res; 2020 Jun; 48(11):6092-6107. PubMed ID: 32402080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast SUMO isopeptidase Smt4/Ulp2 and the polo kinase Cdc5 act in an opposing fashion to regulate sumoylation in mitosis and cohesion at centromeres.
    Guacci VA
    Cell Cycle; 2009 Dec; 8(23):3811-2. PubMed ID: 19887903
    [No Abstract]   [Full Text] [Related]  

  • 19. Discovery of a dual protease mechanism that promotes DNA damage checkpoint recovery.
    Burby PE; Simmons ZW; Schroeder JW; Simmons LA
    PLoS Genet; 2018 Jul; 14(7):e1007512. PubMed ID: 29979679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensuring the stability of the genome: DNA damage checkpoints.
    Latif C; Harvey SH; O'Connell MJ
    ScientificWorldJournal; 2001 Nov; 1():684-702. PubMed ID: 12805771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.