These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18196968)

  • 21. Beta-catenin/Tcf-regulated transcription prior to the midblastula transition.
    Yang J; Tan C; Darken RS; Wilson PA; Klein PS
    Development; 2002 Dec; 129(24):5743-52. PubMed ID: 12421713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spindle assembly checkpoint acquisition at the mid-blastula transition.
    Zhang M; Kothari P; Lampson MA
    PLoS One; 2015; 10(3):e0119285. PubMed ID: 25741707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The midblastula transition defines the onset of Y RNA-dependent DNA replication in Xenopus laevis.
    Collart C; Christov CP; Smith JC; Krude T
    Mol Cell Biol; 2011 Sep; 31(18):3857-70. PubMed ID: 21791613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage.
    Finkielstein CV; Lewellyn AL; Maller JL
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1006-11. PubMed ID: 11158585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing.
    Jevtić P; Levy DL
    Curr Biol; 2015 Jan; 25(1):45-52. PubMed ID: 25484296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of a DNA damaging agent on embryonic cell cycles of the cnidarian Hydractinia echinata.
    Su TT
    PLoS One; 2010 Jul; 5(7):e11760. PubMed ID: 20668699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio.
    Conn CW; Lewellyn AL; Maller JL
    Dev Cell; 2004 Aug; 7(2):275-81. PubMed ID: 15296723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. grp (chk1) replication-checkpoint mutations and DNA damage trigger a Chk2-dependent block at the Drosophila midblastula transition.
    Takada S; Kwak S; Koppetsch BS; Theurkauf WE
    Development; 2007 May; 134(9):1737-44. PubMed ID: 17409117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monoclonal antibody against dnmt1 arrests the cell division of xenopus early-stage embryos.
    Hashimoto H; Suetake I; Tajima S
    Exp Cell Res; 2003 Jun; 286(2):252-62. PubMed ID: 12749854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A conserved element in the protein-coding sequence is required for normal expression of replication-dependent histone genes in developing Xenopus embryos.
    Ficzycz A; Kaludov NK; Lele Z; Hurt MM; Ovsenek N
    Dev Biol; 1997 Feb; 182(1):21-32. PubMed ID: 9073440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excess histone H3 is a competitive Chk1 inhibitor that controls cell-cycle remodeling in the early Drosophila embryo.
    Shindo Y; Amodeo AA
    Curr Biol; 2021 Jun; 31(12):2633-2642.e6. PubMed ID: 33848457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition.
    Lu X; Li JM; Elemento O; Tavazoie S; Wieschaus EF
    Development; 2009 Jun; 136(12):2101-10. PubMed ID: 19465600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly asynchronous and asymmetric cleavage divisions accompany early transcriptional activity in pre-blastula medaka embryos.
    Kraeussling M; Wagner TU; Schartl M
    PLoS One; 2011; 6(7):e21741. PubMed ID: 21750728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RAD18 Is a Maternal Limiting Factor Silencing the UV-Dependent DNA Damage Checkpoint in Xenopus Embryos.
    Kermi C; Prieto S; van der Laan S; Tsanov N; Recolin B; Uro-Coste E; Delisle MB; Maiorano D
    Dev Cell; 2015 Aug; 34(3):364-72. PubMed ID: 26212134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frühstart at the midblastula transition.
    Packer A
    Nat Genet; 2003 Oct; 35(2):119. PubMed ID: 14517537
    [No Abstract]   [Full Text] [Related]  

  • 36. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition.
    Zhang M; Skirkanich J; Lampson MA; Klein PS
    Adv Exp Med Biol; 2017; 953():441-487. PubMed ID: 27975277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition.
    Blythe SA; Wieschaus EF
    Cell; 2015 Mar; 160(6):1169-81. PubMed ID: 25748651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulatory pathways coordinating cell cycle progression in early Xenopus development.
    Gotoh T; Villa LM; Capelluto DG; Finkielstein CV
    Results Probl Cell Differ; 2011; 53():171-99. PubMed ID: 21630146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition.
    Dalle Nogare DE; Pauerstein PT; Lane ME
    Dev Biol; 2009 Feb; 326(1):131-42. PubMed ID: 19063878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of inhibitors of DNA replication on early zebrafish embryos: evidence for coordinate activation of multiple intrinsic cell-cycle checkpoints at the mid-blastula transition.
    Ikegami R; Rivera-Bennetts AK; Brooker DL; Yager TD
    Zygote; 1997 May; 5(2):153-75. PubMed ID: 9276512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.