BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18196969)

  • 1. Compensatory activation of ERK1/2 in Atg5-deficient mouse embryo fibroblasts suppresses oxidative stress-induced cell death.
    Pyo JO; Nah J; Kim HJ; Lee HJ; Heo J; Lee H; Jung YK
    Autophagy; 2008 Apr; 4(3):315-21. PubMed ID: 18196969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stanniocalcin-1 acts in a negative feedback loop in the prosurvival ERK1/2 signaling pathway during oxidative stress.
    Nguyen A; Chang AC; Reddel RR
    Oncogene; 2009 May; 28(18):1982-92. PubMed ID: 19347030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HSP25 overexpression attenuates oxidative stress-induced apoptosis: roles of ERK1/2 signaling and manganese superoxide dismutase.
    Lee YJ; Cho HN; Jeoung DI; Soh JW; Cho CK; Bae S; Chung HY; Lee SJ; Lee YS
    Free Radic Biol Med; 2004 Feb; 36(4):429-44. PubMed ID: 14975446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorafenib-induced defective autophagy promotes cell death by necroptosis.
    Kharaziha P; Chioureas D; Baltatzis G; Fonseca P; Rodriguez P; Gogvadze V; Lennartsson L; Björklund AC; Zhivotovsky B; Grandér D; Egevad L; Nilsson S; Panaretakis T
    Oncotarget; 2015 Nov; 6(35):37066-82. PubMed ID: 26416459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The EphB2 tumor suppressor induces autophagic cell death via concomitant activation of the ERK1/2 and PI3K pathways.
    Kandouz M; Haidara K; Zhao J; Brisson ML; Batist G
    Cell Cycle; 2010 Jan; 9(2):398-407. PubMed ID: 20046096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cIAP-2 protects cardiac fibroblasts from oxidative damage: an obligate regulatory role for ERK1/2 MAPK and NF-κB.
    Philip L; Shivakumar K
    J Mol Cell Cardiol; 2013 Sep; 62():217-26. PubMed ID: 23837962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy adaptive response during parthanatos is enhanced by PD98059 and involves mitochondrial function but not autophagy induction.
    Huang CT; Huang DY; Hu CJ; Wu D; Lin WW
    Biochim Biophys Acta; 2014 Mar; 1843(3):531-43. PubMed ID: 24321770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of c-Fos/JunD in protecting stress-induced cell death.
    Zhou H; Gao J; Lu ZY; Lu L; Dai W; Xu M
    Cell Prolif; 2007 Jun; 40(3):431-44. PubMed ID: 17531086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death.
    Ho Y; Samarasinghe R; Knoch ME; Lewis M; Aizenman E; DeFranco DB
    Mol Pharmacol; 2008 Oct; 74(4):1141-51. PubMed ID: 18635668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of ERK1/2, JNK and PKB by hydrogen peroxide in human SH-SY5Y neuroblastoma cells: role of ERK1/2 in H2O2-induced cell death.
    Ruffels J; Griffin M; Dickenson JM
    Eur J Pharmacol; 2004 Jan; 483(2-3):163-73. PubMed ID: 14729104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation.
    Lee YJ; Cho HN; Soh JW; Jhon GJ; Cho CK; Chung HY; Bae S; Lee SJ; Lee YS
    Exp Cell Res; 2003 Nov; 291(1):251-66. PubMed ID: 14597424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease.
    Dagda RK; Zhu J; Kulich SM; Chu CT
    Autophagy; 2008 Aug; 4(6):770-82. PubMed ID: 18594198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.
    Deegan S; Saveljeva S; Logue SE; Pakos-Zebrucka K; Gupta S; Vandenabeele P; Bertrand MJ; Samali A
    Autophagy; 2014; 10(11):1921-36. PubMed ID: 25470234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3.
    Schroeter H; Spencer JP; Rice-Evans C; Williams RJ
    Biochem J; 2001 Sep; 358(Pt 3):547-57. PubMed ID: 11535118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockout of ATG5 leads to malignant cell transformation and resistance to Src family kinase inhibitor PP2.
    Hwang SH; Han BI; Lee M
    J Cell Physiol; 2018 Jan; 233(1):506-515. PubMed ID: 28294316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress.
    Luo Y; DeFranco DB
    J Biol Chem; 2006 Jun; 281(24):16436-42. PubMed ID: 16621802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases.
    Cheong H; Lindsten T; Wu J; Lu C; Thompson CB
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11121-6. PubMed ID: 21690395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal effects of rab7 deletion in activated and neglected T cells.
    Roy SG; Stevens MW; So L; Edinger AL
    Autophagy; 2013 Jul; 9(7):1009-23. PubMed ID: 23615463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of macroautophagy promotes or prevents fibroblast apoptosis depending on the death stimulus.
    Wang Y; Singh R; Massey AC; Kane SS; Kaushik S; Grant T; Xiang Y; Cuervo AM; Czaja MJ
    J Biol Chem; 2008 Feb; 283(8):4766-77. PubMed ID: 18073215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-methyl-D-aspartate receptor activation results in regulation of extracellular signal-regulated kinases by protein kinases and phosphatases in glutamate-induced neuronal apototic-like death.
    Jiang Q; Gu Z; Zhang G; Jing G
    Brain Res; 2000 Dec; 887(2):285-92. PubMed ID: 11134617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.