These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 18197364)
1. Comparison of an experimental bone cement with surgical Simplex P, Spineplex and Cortoss. Boyd D; Towler MR; Wren A; Clarkin OM J Mater Sci Mater Med; 2008 Apr; 19(4):1745-52. PubMed ID: 18197364 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a novel radiopacifiying agent on the physical properties of surgical spineplex. O'Brien D; Boyd D; Madigan S; Murphy S J Mater Sci Mater Med; 2010 Jan; 21(1):53-8. PubMed ID: 19688251 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty. Lewis G; Towler MR; Boyd D; German MJ; Wren AW; Clarkin OM; Yates A J Mater Sci Mater Med; 2010 Jan; 21(1):59-66. PubMed ID: 19655232 [TBL] [Abstract][Full Text] [Related]
4. Surface structural change of bioactive inorganic filler-resin composite cement in simulated body fluid: effect of resin. Miyaji F; Morita Y; Kokubo T; Nakamura T J Biomed Mater Res; 1998 Dec; 42(4):604-10. PubMed ID: 9827685 [TBL] [Abstract][Full Text] [Related]
5. Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate. Liu J; Shirosaki Y; Miyazaki T J Biomater Appl; 2015 Apr; 29(9):1296-303. PubMed ID: 25568169 [TBL] [Abstract][Full Text] [Related]
6. Comparison of a new bisphenol-a-glycidyl dimethacrylate-based cortical bone void filler with polymethyl methacrylate. Erbe EM; Clineff TD; Gualtieri G Eur Spine J; 2001 Oct; 10 Suppl 2(Suppl 2):S147-52. PubMed ID: 11716012 [TBL] [Abstract][Full Text] [Related]
7. Effect of silane treatment and different resin compositions on biological properties of bioactive bone cement containing apatite-wollastonite glass ceramic powder. Mousa WF; Kobayashi M; Kitamura Y; Zeineldin IA; Nakamura T J Biomed Mater Res; 1999 Dec; 47(3):336-44. PubMed ID: 10487884 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate. Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740 [TBL] [Abstract][Full Text] [Related]
9. Polymerization kinetics stability, volumetric changes, apatite precipitation, strontium release and fatigue of novel bone composites for vertebroplasty. Panpisut P; Khan MA; Main K; Arshad M; Xia W; Petridis H; Young AM PLoS One; 2019; 14(3):e0207965. PubMed ID: 30883564 [TBL] [Abstract][Full Text] [Related]
10. In silico evaluation of stress distribution after vertebral body augmentation with conventional acrylics, composites and glass polyalkenoate cements. Dickey BT; Tyndyk MA; Doman DA; Boyd D J Mech Behav Biomed Mater; 2012 Jan; 5(1):283-90. PubMed ID: 22100103 [TBL] [Abstract][Full Text] [Related]
11. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
12. Short- and long-term effects of vertebroplastic bone cement on cancellous bone. Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857 [TBL] [Abstract][Full Text] [Related]
13. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Boger A; Bohner M; Heini P; Schwieger K; Schneider E Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533 [TBL] [Abstract][Full Text] [Related]
14. Comparison of an experimental bone cement with a commercial control, Hydroset. Clarkin OM; Boyd D; Madigan S; Towler MR J Mater Sci Mater Med; 2009 Jul; 20(7):1563-70. PubMed ID: 19214713 [TBL] [Abstract][Full Text] [Related]
15. Development of high-viscosity, two-paste bioactive bone cements. Deb S; Aiyathurai L; Roether JA; Luklinska ZB Biomaterials; 2005 Jun; 26(17):3713-8. PubMed ID: 15621261 [TBL] [Abstract][Full Text] [Related]
16. Mechanical characterisation of three percutaneous vertebroplasty biomaterials. Gheduzzi S; Webb JJ; Miles AW J Mater Sci Mater Med; 2006 May; 17(5):421-6. PubMed ID: 16688582 [TBL] [Abstract][Full Text] [Related]
17. Compressive mechanical properties and cytocompatibility of bone-compliant, linoleic acid-modified bone cement in a bovine model. López A; Mestres G; Karlsson Ott M; Engqvist H; Ferguson SJ; Persson C; Helgason B J Mech Behav Biomed Mater; 2014 Apr; 32():245-256. PubMed ID: 24508711 [TBL] [Abstract][Full Text] [Related]
18. Effects of ceramic component on cephalexin release from bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics. Otsuka M; Fujita H; Nakamura T; Kokubo T Biomed Mater Eng; 2001; 11(1):11-22. PubMed ID: 11281575 [TBL] [Abstract][Full Text] [Related]
19. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty. Robo C; Öhman-Mägi C; Persson C J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115 [TBL] [Abstract][Full Text] [Related]
20. A novel high-viscosity, two-solution acrylic bone cement: effect of chemical composition on properties. Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL J Biomed Mater Res; 1999 Oct; 47(1):36-45. PubMed ID: 10400878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]