These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18197688)
1. Reduction of tertiary phosphine oxides with DIBAL-H. Busacca CA; Raju R; Grinberg N; Haddad N; James-Jones P; Lee H; Lorenz JC; Saha A; Senanayake CH J Org Chem; 2008 Feb; 73(4):1524-31. PubMed ID: 18197688 [TBL] [Abstract][Full Text] [Related]
2. Selective mono reduction of bis-phosphine oxides under mild conditions. Petersson MJ; Loughlin WA; Jenkins ID Chem Commun (Camb); 2008 Oct; (37):4493-4. PubMed ID: 18802601 [TBL] [Abstract][Full Text] [Related]
3. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes. Clarke C; Fox DJ; Pedersen DS; Warren S Org Biomol Chem; 2009 Apr; 7(7):1329-36. PubMed ID: 19300817 [TBL] [Abstract][Full Text] [Related]
4. A superior method for the reduction of secondary phosphine oxides. Busacca CA; Lorenz JC; Grinberg N; Haddad N; Hrapchak M; Latli B; Lee H; Sabila P; Saha A; Sarvestani M; Shen S; Varsolona R; Wei X; Senanayake CH Org Lett; 2005 Sep; 7(19):4277-80. PubMed ID: 16146406 [TBL] [Abstract][Full Text] [Related]
5. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system. Cervilla A; Pérez-Pla F; Llopis E; Piles M Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938 [TBL] [Abstract][Full Text] [Related]
6. Reduction of secondary and tertiary phosphine oxides to phosphines. Hérault D; Nguyen DH; Nuel D; Buono G Chem Soc Rev; 2015 Apr; 44(8):2508-28. PubMed ID: 25714261 [TBL] [Abstract][Full Text] [Related]
7. Phosphine-catalyzed reductions of alkyl silyl peroxides by titanium hydride reducing agents: development of the method and mechanistic investigations. Harris JR; Haynes MT; Thomas AM; Woerpel KA J Org Chem; 2010 Aug; 75(15):5083-91. PubMed ID: 20604518 [TBL] [Abstract][Full Text] [Related]
8. Easily immobilized di- and tetraphosphine linkers: rigid scaffolds that prevent interactions of metal complexes with oxide supports. Yang Y; Beele B; Blümel J J Am Chem Soc; 2008 Mar; 130(12):3771-3. PubMed ID: 18311988 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and redox properties of crowded triarylphosphines possessing ferrocenyl groups. Sutoh K; Sasaki S; Yoshifuji M Inorg Chem; 2006 Feb; 45(3):992-8. PubMed ID: 16441105 [TBL] [Abstract][Full Text] [Related]
10. Efficient aryl-(hetero)aryl coupling by activation of C-Cl and C-F bonds using nickel complexes of air-stable phosphine oxides. Ackermann L; Born R; Spatz JH; Meyer D Angew Chem Int Ed Engl; 2005 Nov; 44(44):7216-9. PubMed ID: 16229046 [No Abstract] [Full Text] [Related]
11. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides. Zhang P; Zhang L; Gao Y; Xu J; Fang H; Tang G; Zhao Y Chem Commun (Camb); 2015 May; 51(37):7839-42. PubMed ID: 25855268 [TBL] [Abstract][Full Text] [Related]
12. Phosphine and phosphine oxide groups in metal-organic frameworks detected by P K-edge XAS. Morel FL; Pin S; Huthwelker T; Ranocchiari M; van Bokhoven JA Phys Chem Chem Phys; 2015 Feb; 17(5):3326-31. PubMed ID: 25523824 [TBL] [Abstract][Full Text] [Related]
13. In situ phosphine oxide reduction: a catalytic Appel reaction. van Kalkeren HA; Leenders SH; Hommersom CR; Rutjes FP; van Delft FL Chemistry; 2011 Sep; 17(40):11290-5. PubMed ID: 21882274 [TBL] [Abstract][Full Text] [Related]
14. Air-stable secondary phosphine oxide as preligand for palladium-catalyzed intramolecular alpha-arylations with chloroarenes. Ackermann L; Vicente R; Hofmann N Org Lett; 2009 Oct; 11(19):4274-6. PubMed ID: 19775182 [TBL] [Abstract][Full Text] [Related]
15. NMR spectrometric study of molecular complex formation of [60]- and [70]fullerenes with a number of phosphine oxides. Bhattacharya S; Banerjee S; Nayak SK; Chattopadhyay S; Mukherjee AK Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1099-104. PubMed ID: 15084329 [TBL] [Abstract][Full Text] [Related]
16. Development of a redox-free Mitsunobu reaction exploiting phosphine oxides as precursors to dioxyphosphoranes. Tang X; Chapman C; Whiting M; Denton R Chem Commun (Camb); 2014 Jul; 50(55):7340-3. PubMed ID: 24871529 [TBL] [Abstract][Full Text] [Related]
17. Adducts of Rh2[MTPA]4 with some phosphine chalcogenides: nature of binding and ligand exchange. Gáti T; Simon A; Tóth G; Magiera D; Moeller S; Duddeck H Magn Reson Chem; 2004 Jul; 42(7):600-4. PubMed ID: 15181630 [TBL] [Abstract][Full Text] [Related]
18. Quantitative determination of loadings and oxidation products of polystyrene-bound phosphines using 31p MAS NMR. Rentsch D; Hany R; Barthélémy S; Steinauer R J Comb Chem; 2003; 5(5):610-6. PubMed ID: 12959562 [TBL] [Abstract][Full Text] [Related]
19. Facile reductive cleavage of purine nucleosides to acyclonucleosides using diisobutylaluminium hydride (DIBAL): a new synthetic method for the preparation of 9-ribitylpurine derivatives. Kitade Y; Hirota K; Maki Y Nucleic Acids Symp Ser; 1992; (27):107-8. PubMed ID: 1289780 [TBL] [Abstract][Full Text] [Related]
20. Bowl-shaped C(3)-symmetric receptor with concave phosphine oxide with a remarkable selectivity for asparagine derivatives. Lee KH; Lee DH; Hwang S; Lee OS; Chung DS; Hong JI Org Lett; 2003 May; 5(9):1431-3. PubMed ID: 12713291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]