These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18197892)

  • 1. Evidence for the regulation of L-type Ca2+ channels in the heart by reactive oxygen species: mechanism for mediating pathology.
    Hool LC
    Clin Exp Pharmacol Physiol; 2008 Feb; 35(2):229-34. PubMed ID: 18197892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cardiac L-type calcium channel alpha subunit is a target for direct redox modification during oxidative stress-the role of cysteine residues in the alpha interacting domain.
    Muralidharan P; Cserne Szappanos H; Ingley E; Hool LC
    Clin Exp Pharmacol Physiol; 2017 Dec; 44 Suppl 1():46-54. PubMed ID: 28306174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen free radicals and excitation-contraction coupling.
    Goldhaber JI; Qayyum MS
    Antioxid Redox Signal; 2000; 2(1):55-64. PubMed ID: 11232601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What cardiologists should know about calcium ion channels and their regulation by reactive oxygen species.
    Hool LC
    Heart Lung Circ; 2007 Oct; 16(5):361-72. PubMed ID: 17353151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of acute hypoxia on excitability in the heart and the L-type calcium channel as a therapeutic target.
    Macdonald WA; Hool LC
    Curr Drug Discov Technol; 2008 Dec; 5(4):302-11. PubMed ID: 19075610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction.
    Kajimoto H; Hashimoto K; Bonnet SN; Haromy A; Harry G; Moudgil R; Nakanishi T; Rebeyka I; Thébaud B; Michelakis ED; Archer SL
    Circulation; 2007 Apr; 115(13):1777-88. PubMed ID: 17353442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox control of calcium channels: from mechanisms to therapeutic opportunities.
    Hool LC; Corry B
    Antioxid Redox Signal; 2007 Apr; 9(4):409-35. PubMed ID: 17280484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state.
    Hool LC
    Heart Lung Circ; 2009 Feb; 18(1):3-10. PubMed ID: 19119068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of cardiac calcium channels and transporters.
    Zima AV; Blatter LA
    Cardiovasc Res; 2006 Jul; 71(2):310-21. PubMed ID: 16581043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The L-type Ca(2+) channel as a therapeutic target in heart disease.
    Viola HM; Macdonald WA; Tang H; Hool LC
    Curr Med Chem; 2009; 16(26):3341-58. PubMed ID: 19548874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species in cardiac signalling: from mitochondria to plasma membrane ion channels.
    Hool LC
    Clin Exp Pharmacol Physiol; 2006; 33(1-2):146-51. PubMed ID: 16445714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective macrophage redox defense against Chlamydia pneumoniae depends on L-type Ca2+ channel activation.
    Azenabor AA; Chaudhry AU
    Med Microbiol Immunol; 2003 May; 192(2):99-106. PubMed ID: 12736823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases.
    He F; Zuo L
    Int J Mol Sci; 2015 Nov; 16(11):27770-80. PubMed ID: 26610475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxic and redox inhibition of the human cardiac L-type Ca2+ channel.
    Fearon IM; Palmer AC; Balmforth AJ; Ball SG; Varadi G; Peers C
    Adv Exp Med Biol; 2000; 475():209-18. PubMed ID: 10849662
    [No Abstract]   [Full Text] [Related]  

  • 15. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
    Waypa GB; Guzy R; Mungai PT; Mack MM; Marks JD; Roe MW; Schumacker PT
    Circ Res; 2006 Oct; 99(9):970-8. PubMed ID: 17008601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benidipine, an anti-hypertensive drug, inhibits reactive oxygen species production in polymorphonuclear leukocytes and oxidative stress in salt-loaded stroke-prone spontaneously hypertensive rats.
    Matsubara M; Akizuki O; Ikeda J; Saeki K; Yao K; Sasaki K
    Eur J Pharmacol; 2008 Feb; 580(1-2):201-13. PubMed ID: 18048030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heart failure, oxidative stress, and ion channel modulation.
    Choudhary G; Dudley SC
    Congest Heart Fail; 2002; 8(3):148-55. PubMed ID: 12045383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Ca2+ release from internal stores in cardiac and skeletal muscles.
    Wrzosek A
    Acta Biochim Pol; 2000; 47(3):705-23. PubMed ID: 11310971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling.
    Migdal C; Foggia L; Tailhardat M; Courtellemont P; Haftek M; Serres M
    Toxicology; 2010; 274(1-3):1-9. PubMed ID: 20457211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The anti-inflammatory and antioxidant effects of long-chain n-3 fatty acids or oil-rich fish may favorably affect atrial remodeling in atrial fibrillation.
    Korantzopoulos P; Kolettis TM; Goudevenos JA
    Med Hypotheses; 2005; 64(6):1245-6. PubMed ID: 15823733
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.