BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 18197981)

  • 1. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates.
    Uddin M; Opazo JC; Wildman DE; Sherwood CC; Hof PR; Goodman M; Grossman LI
    BMC Evol Biol; 2008 Jan; 8():8. PubMed ID: 18197981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of aerobic energy metabolism in primates.
    Grossman LI; Schmidt TR; Wildman DE; Goodman M
    Mol Phylogenet Evol; 2001 Jan; 18(1):26-36. PubMed ID: 11161739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates.
    Wu W; Goodman M; Lomax MI; Grossman LI
    J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates.
    Goldberg A; Wildman DE; Schmidt TR; Huttemann M; Goodman M; Weiss ML; Grossman LI
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5873-8. PubMed ID: 12716970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates.
    Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid nonsynonymous evolution of the iron-sulfur protein in anthropoid primates.
    Doan JW; Schmidt TR; Wildman DE; Goodman M; Weiss ML; Grossman LI
    J Bioenerg Biomembr; 2005 Feb; 37(1):35-41. PubMed ID: 15906147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins?
    Andrews TD; Jermiin LS; Easteal S
    J Mol Evol; 1998 Sep; 47(3):249-57. PubMed ID: 9732451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coadaptive evolution in cytochrome c oxidase: 9 of 13 subunits show accelerated rates of nonsynonymous substitution in anthropoid primates.
    Doan JW; Schmidt TR; Wildman DE; Uddin M; Goldberg A; Hüttemann M; Goodman M; Weiss ML; Grossman LI
    Mol Phylogenet Evol; 2004 Dec; 33(3):944-50. PubMed ID: 15522815
    [No Abstract]   [Full Text] [Related]  

  • 10. Amino acid replacement is rapid in primates for the mature polypeptides of COX subunits, but not for their targeting presequences.
    Schmidt TR; Goodman M; Grossman LI
    Gene; 2002 Mar; 286(1):13-9. PubMed ID: 11943455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated evolution of the electron transport chain in anthropoid primates.
    Grossman LI; Wildman DE; Schmidt TR; Goodman M
    Trends Genet; 2004 Nov; 20(11):578-85. PubMed ID: 15475118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the nuclear-encoded cytochrome oxidase subunits in vertebrates.
    Little AG; Kocha KM; Lougheed SC; Moyes CD
    Physiol Genomics; 2010 Jun; 42(1):76-84. PubMed ID: 20233836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of brains from early mammals to humans.
    Kaas JH
    Wiley Interdiscip Rev Cogn Sci; 2013 Jan; 4(1):33-45. PubMed ID: 23529256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traumatic brain injury-induced changes in gene expression and functional activity of mitochondrial cytochrome C oxidase.
    Harris LK; Black RT; Golden KM; Reeves TM; Povlishock JT; Phillips LL
    J Neurotrauma; 2001 Oct; 18(10):993-1009. PubMed ID: 11686499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the primate cytochrome c oxidase subunit II gene.
    Adkins RM; Honeycutt RL
    J Mol Evol; 1994 Mar; 38(3):215-31. PubMed ID: 8006990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates.
    Montgomery SH; Capellini I; Venditti C; Barton RA; Mundy NI
    Mol Biol Evol; 2011 Jan; 28(1):625-38. PubMed ID: 20961963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences.
    Seo TK; Kishino H; Thorne JL
    Mol Biol Evol; 2004 Jul; 21(7):1201-13. PubMed ID: 15014159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conservation and loss of the ERV3 open reading frame in primates.
    Hervé CA; Forrest G; Löwer R; Griffiths DJ; Venables PJ
    Genomics; 2004 May; 83(5):940-3. PubMed ID: 15081124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of eutherian cytochrome c oxidase subunit II: heterogeneous rates of protein evolution and altered interaction with cytochrome c.
    Adkins RM; Honeycutt RL; Disotell TR
    Mol Biol Evol; 1996 Dec; 13(10):1393-404. PubMed ID: 8952084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylation and expression analyses of the 7q autism susceptibility locus genes MEST , COPG2, and TSGA14 in human and anthropoid primate cortices.
    Schneider E; Mayer S; El Hajj N; Jensen LR; Kuss AW; Zischler H; Kondova I; Bontrop RE; Navarro B; Fuchs E; Zechner U; Haaf T
    Cytogenet Genome Res; 2012; 136(4):278-87. PubMed ID: 22456293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.