These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Triaxial accelerometry for assessment of physical activity in young children. Tanaka C; Tanaka S; Kawahara J; Midorikawa T Obesity (Silver Spring); 2007 May; 15(5):1233-41. PubMed ID: 17495200 [TBL] [Abstract][Full Text] [Related]
3. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Bouten CV; Westerterp KR; Verduin M; Janssen JD Med Sci Sports Exerc; 1994 Dec; 26(12):1516-23. PubMed ID: 7869887 [TBL] [Abstract][Full Text] [Related]
4. Tracmor system for measuring walking energy expenditure. Levine J; Melanson EL; Westerterp KR; Hill JO Eur J Clin Nutr; 2003 Sep; 57(9):1176-80. PubMed ID: 12947439 [TBL] [Abstract][Full Text] [Related]
5. Predictive validity of three ActiGraph energy expenditure equations for children. Trost SG; Way R; Okely AD Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910 [TBL] [Abstract][Full Text] [Related]
6. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909 [TBL] [Abstract][Full Text] [Related]
8. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry. Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594 [TBL] [Abstract][Full Text] [Related]
9. Accurate prediction of energy expenditure using a shoe-based activity monitor. Sazonova N; Browning RC; Sazonov E Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868 [TBL] [Abstract][Full Text] [Related]
10. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening. Spears KE; Kim H; Behall KM; Conway JM J Am Diet Assoc; 2009 May; 109(5):836-45. PubMed ID: 19394470 [TBL] [Abstract][Full Text] [Related]
11. Ability of different physical activity monitors to detect movement during treadmill walking. Leenders NY; Nelson TE; Sherman WM Int J Sports Med; 2003 Jan; 24(1):43-50. PubMed ID: 12582951 [TBL] [Abstract][Full Text] [Related]
12. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents. Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888 [TBL] [Abstract][Full Text] [Related]
13. Use of heart rate to predict energy expenditure from low to high activity levels. Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a commercial accelerometer (Tritrac-R3 D) to measure energy expenditure during ambulation. Sherman WM; Morris DM; Kirby TE; Petosa RA; Smith BA; Frid DJ; Leenders N Int J Sports Med; 1998 Jan; 19(1):43-7. PubMed ID: 9506799 [TBL] [Abstract][Full Text] [Related]
15. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Howe CA; Staudenmayer JW; Freedson PS Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498 [TBL] [Abstract][Full Text] [Related]
17. Is the ArteACC index a valid indicator of free-living physical activity in adolescents? Ekelund U; Aman J; Westerterp K Obes Res; 2003 Jun; 11(6):793-801. PubMed ID: 12805401 [TBL] [Abstract][Full Text] [Related]
18. Interindividual variability in sleeping metabolic rate in Japanese subjects. Ganpule AA; Tanaka S; Ishikawa-Takata K; Tabata I Eur J Clin Nutr; 2007 Nov; 61(11):1256-61. PubMed ID: 17299487 [TBL] [Abstract][Full Text] [Related]
19. An artificial neural network model of energy expenditure using nonintegrated acceleration signals. Rothney MP; Neumann M; Béziat A; Chen KY J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the SenseWear activity monitor during exercise in cystic fibrosis and in health. Dwyer TJ; Alison JA; McKeough ZJ; Elkins MR; Bye PT Respir Med; 2009 Oct; 103(10):1511-7. PubMed ID: 19464863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]