These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 18198708)
1. Influence of pedaling rate on muscle mechanical energy in low power recumbent pedaling using forward dynamic simulations. Hakansson NA; Hull ML IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):509-16. PubMed ID: 18198708 [TBL] [Abstract][Full Text] [Related]
2. Functional roles of the leg muscles when pedaling in the recumbent versus the upright position. Hakansson NA; Hull ML J Biomech Eng; 2005 Apr; 127(2):301-10. PubMed ID: 15971708 [TBL] [Abstract][Full Text] [Related]
3. Sloped muscle excitation waveforms improve the accuracy of forward dynamic simulations. Camilleri MJ; Hull ML; Hakansson N J Biomech; 2007; 40(7):1423-32. PubMed ID: 16949082 [TBL] [Abstract][Full Text] [Related]
4. Crank inertial load has little effect on steady-state pedaling coordination. Fregly BJ; Zajac FE; Dairaghi CA J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654 [TBL] [Abstract][Full Text] [Related]
5. Muscle stimulation waveform timing patterns for upper and lower leg muscle groups to increase muscular endurance in functional electrical stimulation pedaling using a forward dynamic model. Hakansson NA; Hull ML IEEE Trans Biomed Eng; 2009 Sep; 56(9):2263-70. PubMed ID: 19380265 [TBL] [Abstract][Full Text] [Related]
6. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling. Koehle MJ; Hull ML J Biomech Eng; 2010 Jan; 132(1):011007. PubMed ID: 20524745 [TBL] [Abstract][Full Text] [Related]
7. Locomotor strategy for pedaling: muscle groups and biomechanical functions. Raasch CC; Zajac FE J Neurophysiol; 1999 Aug; 82(2):515-25. PubMed ID: 10444651 [TBL] [Abstract][Full Text] [Related]
8. Why does power output decrease at high pedaling rates during sprint cycling? Samozino P; Horvais N; Hintzy F Med Sci Sports Exerc; 2007 Apr; 39(4):680-7. PubMed ID: 17414806 [TBL] [Abstract][Full Text] [Related]
9. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. Rankin JW; Neptune RR J Biomech; 2008; 41(7):1494-502. PubMed ID: 18395213 [TBL] [Abstract][Full Text] [Related]
10. Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling. Neptune RR; Kautz SA; Zajac FE J Biomech; 2000 Feb; 33(2):155-64. PubMed ID: 10653028 [TBL] [Abstract][Full Text] [Related]
11. Effect of crank length on joint-specific power during maximal cycling. Barratt PR; Korff T; Elmer SJ; Martin JC Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357 [TBL] [Abstract][Full Text] [Related]
12. Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation. Kautz SA; Brown DA; Van der Loos HF; Zajac FE J Neurophysiol; 2002 Sep; 88(3):1308-17. PubMed ID: 12205152 [TBL] [Abstract][Full Text] [Related]
13. Muscle force redistributes segmental power for body progression during walking. Neptune RR; Zajac FE; Kautz SA Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508 [TBL] [Abstract][Full Text] [Related]
14. Timing of muscle activation of the lower limbs can be modulated to maintain a constant pedaling cadence. Rouffet DM; Mornieux G; Zameziati K; Belli A; Hautier CA J Electromyogr Kinesiol; 2009 Dec; 19(6):1100-7. PubMed ID: 19138863 [TBL] [Abstract][Full Text] [Related]
15. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Dorel S; Couturier A; Lacour JR; Vandewalle H; Hautier C; Hug F Med Sci Sports Exerc; 2010 Jun; 42(6):1174-83. PubMed ID: 19997017 [TBL] [Abstract][Full Text] [Related]
16. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling. Gregersen CS; Hull ML; Hakansson NA J Biomech Eng; 2006 Jun; 128(3):391-8. PubMed ID: 16706588 [TBL] [Abstract][Full Text] [Related]
17. Functional output improvement in FES cycling by means of forced smooth pedaling. Szecsi J; Krause P; Krafczyk S; Brandt T; Straube A Med Sci Sports Exerc; 2007 May; 39(5):764-80. PubMed ID: 17468573 [TBL] [Abstract][Full Text] [Related]
18. Specificity of recumbent cycling as a training modality for the functional movements; sit-to-stand and step-up. Kerr A; Rafferty D; Moffat F; Morlan G Clin Biomech (Bristol); 2007 Dec; 22(10):1104-11. PubMed ID: 17854957 [TBL] [Abstract][Full Text] [Related]
19. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization. Szecsi J; Straube A; Fornusek C Med Eng Phys; 2014 Nov; 36(11):1421-7. PubMed ID: 24924382 [TBL] [Abstract][Full Text] [Related]
20. A state-space analysis of mechanical energy generation, absorption, and transfer during pedaling. Fregly BJ; Zajac FE J Biomech; 1996 Jan; 29(1):81-90. PubMed ID: 8839020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]