BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 18198714)

  • 1. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does shorter rehabilitation limit potential recovery poststroke?
    Fasoli SE; Krebs HI; Ferraro M; Hogan N; Volpe BT
    Neurorehabil Neural Repair; 2004 Jun; 18(2):88-94. PubMed ID: 15228804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation.
    Masiero S; Armani M; Ferlini G; Rosati G; Rossi A
    Neurorehabil Neural Repair; 2014 May; 28(4):377-86. PubMed ID: 24316679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs.
    Masiero S; Celia A; Armani M; Rosati G
    Aging Clin Exp Res; 2006 Dec; 18(6):531-5. PubMed ID: 17255643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy.
    Thrasher TA; Zivanovic V; McIlroy W; Popovic MR
    Neurorehabil Neural Repair; 2008; 22(6):706-14. PubMed ID: 18971385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patient-cooperative strategies for robot-aided treadmill training: first experimental results.
    Riener R; Lünenburger L; Jezernik S; Anderschitz M; Colombo G; Dietz V
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):380-94. PubMed ID: 16200761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation.
    Volpe BT; Krebs HI; Hogan N; Edelstein OTR L; Diels C; Aisen M
    Neurology; 2000 May; 54(10):1938-44. PubMed ID: 10822433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between upper limb activity and impairment in post-stroke hemiplegia.
    Burridge JH; Turk R; Notley SV; Pickering RM; Simpson DM
    Disabil Rehabil; 2009; 31(2):109-17. PubMed ID: 18608395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study.
    Hesse S; Werner C; Schonhardt EM; Bardeleben A; Jenrich W; Kirker SG
    Restor Neurol Neurosci; 2007; 25(1):9-15. PubMed ID: 17473391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Botulinum toxin-a in children with congenital spastic hemiplegia does not improve upper extremity motor-related function over rehabilitation alone: a randomized controlled trial.
    Rameckers EA; Speth LA; Duysens J; Vles JS; Smits-Engelsman BC
    Neurorehabil Neural Repair; 2009; 23(3):218-25. PubMed ID: 19106252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-mediated upper limb physiotherapy: review and recommendations for future clinical trials.
    Péter O; Fazekas G; Zsiga K; Dénes Z
    Int J Rehabil Res; 2011 Sep; 34(3):196-202. PubMed ID: 21543990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients.
    Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):311-24. PubMed ID: 16200755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.