BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18198835)

  • 1. Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer.
    Chan JC; Burugapalli K; Naik H; Kelly JL; Pandit A
    Biomacromolecules; 2008 Feb; 9(2):528-36. PubMed ID: 18198835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing amine terminals in an amine-deprived collagen matrix.
    Tiong WH; Damodaran G; Naik H; Kelly JL; Pandit A
    Langmuir; 2008 Oct; 24(20):11752-61. PubMed ID: 18774827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the properties of cholecyst-derived extracellular matrix using carbodiimide cross-linking.
    Burugapalli K; Chan JC; Naik H; Kelly JL; Pandit A
    J Biomater Sci Polym Ed; 2009; 20(7-8):1049-63. PubMed ID: 19454168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biological stability of collagen with incorporation of PAMAM dendrimer.
    Zhong S; Yung LY
    J Biomed Mater Res A; 2009 Oct; 91(1):114-22. PubMed ID: 18767056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amine functionalization of collagen matrices with multifunctional polyethylene glycol systems.
    Ward J; Kelly J; Wang W; Zeugolis DI; Pandit A
    Biomacromolecules; 2010 Nov; 11(11):3093-101. PubMed ID: 20942484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold with a natural mesh-like architecture: isolation, structural, and in vitro characterization.
    Burugapalli K; Thapasimuttu A; Chan JC; Yao L; Brody S; Kelly JL; Pandit A
    Biomacromolecules; 2007 Mar; 8(3):928-36. PubMed ID: 17309297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cholecyst-derived extracellular matrix on the phenotypic behaviour of valvular endothelial and valvular interstitial cells.
    Brody S; McMahon J; Yao L; O'Brien M; Dockery P; Pandit A
    Biomaterials; 2007 Mar; 28(8):1461-9. PubMed ID: 17174391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular interactions between dimethoxycurcumin and Pamam dendrimer carriers.
    Markatou E; Gionis V; Chryssikos GD; Hatziantoniou S; Georgopoulos A; Demetzos C
    Int J Pharm; 2007 Jul; 339(1-2):231-6. PubMed ID: 17428628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-gp substrates.
    Najlah M; Freeman S; Attwood D; D'Emanuele A
    Bioconjug Chem; 2007; 18(3):937-46. PubMed ID: 17355118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of tissue response and in vivo degradation of cholecyst-derived extracellular matrix.
    Burugapalli K; Pandit A
    Biomacromolecules; 2007 Nov; 8(11):3439-51. PubMed ID: 17918995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of new polymer-bound adenine nucleotides using starburst PAMAM dendrimers.
    Abdelmoez W; Yasuda M; Ogino H; Ishimi K; Ishikawa H
    Biotechnol Prog; 2002; 18(4):706-12. PubMed ID: 12153302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iron(III) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-1,8-naphthalimide.
    Grabchev I; Chovelon JM; Petkov C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):100-4. PubMed ID: 17451996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular heterogeneity analysis of poly(amidoamine) dendrimer-based mono- and multifunctional nanodevices by capillary electrophoresis.
    Shi X; Majoros IJ; Patri AK; Bi X; Islam MT; Desai A; Ganser TR; Baker JR
    Analyst; 2006 Mar; 131(3):374-81. PubMed ID: 16496045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization.
    Saovapakhiran A; D'Emanuele A; Attwood D; Penny J
    Bioconjug Chem; 2009 Apr; 20(4):693-701. PubMed ID: 19271737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery.
    Patil ML; Zhang M; Betigeri S; Taratula O; He H; Minko T
    Bioconjug Chem; 2008 Jul; 19(7):1396-403. PubMed ID: 18576676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels.
    Malý J; Lampová H; Semerádtová A; Stofik M; Kovácik L
    Nanotechnology; 2009 Sep; 20(38):385101. PubMed ID: 19713578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro.
    Yellepeddi VK; Kumar A; Palakurthi S
    Anticancer Res; 2009 Aug; 29(8):2933-43. PubMed ID: 19661298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between PAMAM 4.5 dendrimer, cadmium and bovine serum albumin: a study using equilibrium dialysis, isothermal titration calorimetry, zeta-potential and fluorescence.
    Shcharbin D; Mazur J; Szwedzka M; Wasiak M; Palecz B; Przybyszewska M; Zaborski M; Bryszewska M
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):286-9. PubMed ID: 17532194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions in noncovalent PAMAM/TMPyP systems studied by fluorescence spectroscopy.
    Paulo PM; Costa SM
    J Phys Chem B; 2005 Jul; 109(29):13928-40. PubMed ID: 16852748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared spectroscopic study on guest-host interactions among G0-G7 amine-terminated poly(amidoamine) dendrimers and porous silica materials for simultaneously determining the molecular weight and particle diameter by multivariate calibration techniques.
    Heigl N; Bachmann S; Petter CH; Marchetti-Deschmann M; Allmaier G; Bonn GK; Huck CW
    Anal Chem; 2009 Jul; 81(14):5655-62. PubMed ID: 19601650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.