BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

907 related articles for article (PubMed ID: 18198856)

  • 1. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2007 May; 23(11):5953-62. PubMed ID: 17444663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics study of free energy of micelle formation for sodium dodecyl sulfate in water and its size distribution.
    Yoshii N; Iwahashi K; Okazaki S
    J Chem Phys; 2006 May; 124(18):184901. PubMed ID: 16709133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of interaction energies in the behavior of mixed surfactant systems: a lattice Monte Carlo simulation.
    Poorgholami-Bejarpasi N; Hashemianzadeh M; Mousavi-Khoshdel SM; Sohrabi B
    Langmuir; 2010 Sep; 26(17):13786-96. PubMed ID: 20672817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of mixed micelles: Determination of the aggregate composition.
    Letellier P; Mayaffre A; Turmine M
    J Colloid Interface Sci; 2008 Nov; 327(1):186-90. PubMed ID: 18723182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit solvent simulations of DPC micelle formation.
    Lazaridis T; Mallik B; Chen Y
    J Phys Chem B; 2005 Aug; 109(31):15098-106. PubMed ID: 16852911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 1. Conventional (pH-Insensitive) surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2007 May; 23(11):5942-52. PubMed ID: 17444662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media.
    Stephenson BC; Rangel-Yagui CO; Pessoa Junior A; Tavares LC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1514-25. PubMed ID: 16460069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can purely repulsive soft potentials predict micelle formation correctly?
    Pool R; Bolhuis PG
    Phys Chem Chem Phys; 2006 Feb; 8(8):941-8. PubMed ID: 16482336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of micellization of aqueous solutions of binary mixtures of two anionic surfactants.
    Szymczyk K; Jańczuk B
    Langmuir; 2009 Apr; 25(8):4377-83. PubMed ID: 19243148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical approach to the sodium decanoate-dodecanoate mixed surfactant system in aqueous solution.
    Rodríguez-Pulido A; Casado A; Muñoz-Ubeda M; Junquera E; Aicart E
    Langmuir; 2010 Jun; 26(12):9378-85. PubMed ID: 20462279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.