BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 18199439)

  • 1. Assessing adsorbent-biomass interactions during expanded bed adsorption onto ion exchangers utilizing surface energetics.
    Vennapusa R; Hunegnaw SM; Cabrera RB; Fernández-Lahore M
    J Chromatogr A; 2008 Feb; 1181(1-2):9-20. PubMed ID: 18199439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application.
    Lin DQ; Zhong LN; Yao SJ
    Biotechnol Bioeng; 2006 Sep; 95(1):185-91. PubMed ID: 16739222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass/adsorbent electrostatic interactions in expanded bed adsorption: a zeta potential study.
    Lin DQ; Brixius PJ; Hubbuch JJ; Thömmes J; Kula MR
    Biotechnol Bioeng; 2003 Jul; 83(2):149-57. PubMed ID: 12768620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chemical additives on biomass deposition onto beaded adsorbents.
    Vennapusa RR; Fernandez-Lahore M
    J Biosci Bioeng; 2010 Nov; 110(5):564-71. PubMed ID: 20605108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target control of cell disruption to minimize the biomass electrostatic adhesion during anion-exchange expanded bed adsorption.
    Lin DQ; Dong JN; Yao SJ
    Biotechnol Prog; 2007; 23(1):162-7. PubMed ID: 17269684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of homogenisation conditions on biomass-adsorbent interactions during ion-exchange expanded bed adsorption.
    Hubbuch JJ; Brixius PJ; Lin DQ; Mollerup I; Kula MR
    Biotechnol Bioeng; 2006 Jun; 94(3):543-53. PubMed ID: 16518839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical parameters involved in the interaction of Saccharomyces cerevisiae cells with ion-exchange adsorbents in expanded bed chromatography.
    Vergnault H; Mercier-Bonin M; Willemot RM
    Biotechnol Prog; 2004; 20(5):1534-42. PubMed ID: 15458340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of biomass on the hydrodynamic behavior and stability of expanded beds.
    Lin DQ; Thömmes J; Kula MR; Hubbuch JJ
    Biotechnol Bioeng; 2004 Aug; 87(3):337-46. PubMed ID: 15281108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the influence of yeast cell debris on protein and alpha-glucosidase adsorption at various zones within the expanded bed using in-bed sampling.
    Balasundaram B; Harrison ST; Li J; Chase HA
    Biotechnol Bioeng; 2008 Feb; 99(3):614-24. PubMed ID: 17680682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the extent of disruption of Bakers' yeast on protein adsorption in expanded beds.
    Balasundaram B; Harrison ST
    J Biotechnol; 2008 Feb; 133(3):360-9. PubMed ID: 17933410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell/adsorbent interactions in expanded bed adsorption of proteins.
    Feuser J; Walter J; Kula MR; Thömmes J
    Bioseparation; 1999; 8(1-5):99-109. PubMed ID: 10734561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Study of the interaction of HEK-293 cells with streamline chelating adsorbent in expanded bed operation.
    Poulin F; Jacquemart R; De Crescenzo G; Jolicoeur M; Legros R
    Biotechnol Prog; 2008; 24(1):279-82. PubMed ID: 18197671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyelectrolyte-coated ion exchangers for cell-resistant expanded bed adsorption.
    Dainiak MB; Galaev IY; Mattiasson B
    Biotechnol Prog; 2002; 18(4):815-20. PubMed ID: 12153316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent.
    Lira RA; Minim LA; Bonomo RC; Minim VP; da Silva LH; da Silva MC
    J Chromatogr A; 2009 May; 1216(20):4440-4. PubMed ID: 19342056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production, recovery and purification of a recombinant β-galactosidase by expanded bed anion exchange adsorption.
    Boeris V; Balce I; Vennapusa RR; Arévalo Rodríguez M; Picó G; Lahore MF
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jul; 900():32-7. PubMed ID: 22683026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of ion-selective electrodes for evaluating residence time distributions in expanded bed adsorption systems.
    Fernández-Lahore HM; Lin DQ; Hubbuch JJ; Kula MR; Thömmes J
    Biotechnol Prog; 2001; 17(6):1128-36. PubMed ID: 11735451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended DLVO calculations expose the role of the structural nature of the adsorbent beads during chromatography.
    Aasim M; Bibi NS; Vennapusa RR; Fernandez-Lahore M
    J Sep Sci; 2012 May; 35(9):1068-78. PubMed ID: 22689481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimising biomass/adsorbent interactions in expanded bed adsorption processes: a methodological design approach.
    Lin DQ; Fernández-Lahore HM; Kula MR; Thömmes J
    Bioseparation; 2001; 10(1-3):7-19. PubMed ID: 11787800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of chromatography adsorbents by low temperature low pressure plasma.
    Arpanaei A; Winther-Jensen B; Theodosiou E; Kingshott P; Hobley TJ; Thomas OR
    J Chromatogr A; 2010 Oct; 1217(44):6905-16. PubMed ID: 20869062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot scale recovery of monoclonal antibodies by expanded bed ion exchange adsorption.
    Ameskamp N; Priesner C; Lehmann J; Lütkemeyer D
    Bioseparation; 1999; 8(1-5):169-88. PubMed ID: 10734569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.