BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18199661)

  • 1. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching.
    Mueller F; Wach P; McNally JG
    Biophys J; 2008 Apr; 94(8):3323-39. PubMed ID: 18199661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching.
    Sprague BL; Müller F; Pego RL; Bungay PM; Stavreva DA; McNally JG
    Biophys J; 2006 Aug; 91(4):1169-91. PubMed ID: 16679358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates.
    Stasevich TJ; Mueller F; Michelman-Ribeiro A; Rosales T; Knutson JR; McNally JG
    Biophys J; 2010 Nov; 99(9):3093-101. PubMed ID: 21044608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring dynamic binding of chromatin proteins in vivo by fluorescence recovery after photobleaching.
    Mueller F; Karpova TS; Mazza D; McNally JG
    Methods Mol Biol; 2012; 833():153-76. PubMed ID: 22183594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A benchmark for chromatin binding measurements in live cells.
    Mazza D; Abernathy A; Golob N; Morisaki T; McNally JG
    Nucleic Acids Res; 2012 Aug; 40(15):e119. PubMed ID: 22844090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the dynamics of chromatin proteins during differentiation.
    Harikumar A; Meshorer E
    Methods Mol Biol; 2013; 1042():173-80. PubMed ID: 23980007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative FRAP in analysis of molecular binding dynamics in vivo.
    McNally JG
    Methods Cell Biol; 2008; 85():329-51. PubMed ID: 18155469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins.
    Phair RD; Scaffidi P; Elbi C; Vecerová J; Dey A; Ozato K; Brown DT; Hager G; Bustin M; Misteli T
    Mol Cell Biol; 2004 Jul; 24(14):6393-402. PubMed ID: 15226439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells.
    van Royen ME; Farla P; Mattern KA; Geverts B; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 464():363-85. PubMed ID: 18951195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partner-regulated interaction of IFN regulatory factor 8 with chromatin visualized in live macrophages.
    Laricchia-Robbio L; Tamura T; Karpova T; Sprague BL; McNally JG; Ozato K
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14368-73. PubMed ID: 16183743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FRAP analysis of binding: proper and fitting.
    Sprague BL; McNally JG
    Trends Cell Biol; 2005 Feb; 15(2):84-91. PubMed ID: 15695095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods to study dynamic interaction of androgen receptor with chromatin in living cells.
    Kirli HZ; Saatcioglu F
    Methods Mol Biol; 2011; 776():131-45. PubMed ID: 21796525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear proteins: finding and binding target sites in chromatin.
    van Royen ME; Zotter A; Ibrahim SM; Geverts B; Houtsmuller AB
    Chromosome Res; 2011 Jan; 19(1):83-98. PubMed ID: 21181254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for measuring rates of protein binding to insoluble scaffolds in living cells: histone H1-chromatin interactions.
    Lele T; Wagner SR; Nickerson JA; Ingber DE
    J Cell Biochem; 2006 Dec; 99(5):1334-42. PubMed ID: 16795044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-site transcription rates through fitting of ensemble-averaged data from fluorescence recovery after photobleaching: a fat-tailed distribution.
    Rosenfeld L; Kepten E; Yunger S; Shav-Tal Y; Garini Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032715. PubMed ID: 26465506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRAP and FRET methods to study nuclear receptors in living cells.
    van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin interaction of TATA-binding protein is dynamically regulated in human cells.
    de Graaf P; Mousson F; Geverts B; Scheer E; Tora L; Houtsmuller AB; Timmers HT
    J Cell Sci; 2010 Aug; 123(Pt 15):2663-71. PubMed ID: 20627952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know?
    Mueller F; Mazza D; Stasevich TJ; McNally JG
    Curr Opin Cell Biol; 2010 Jun; 22(3):403-11. PubMed ID: 20413286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivating Pit-1 mutations alter subnuclear dynamics suggesting a protein misfolding and nuclear stress response.
    Sharp ZD; Stenoien DL; Mancini MG; Ouspenski II; Mancini MA
    J Cell Biochem; 2004 Jul; 92(4):664-78. PubMed ID: 15211565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using FRAP to Quantify Changes in Transcription Factor Dynamics After Cell Stimulation: Cell Culture, FRAP, Data Analysis, and Visualization.
    Govindaraj K; Post JN
    Methods Mol Biol; 2021; 2221():109-139. PubMed ID: 32979202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.