These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 18200199)

  • 1. Photoacoustic detection of intracavity absorption.
    Keller RA; Nogar NS; Bomse DS
    Appl Opt; 1983 Nov; 22(21):3331. PubMed ID: 18200199
    [No Abstract]   [Full Text] [Related]  

  • 2. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy.
    Wojtas J; Gluszek A; Hudzikowski A; Tittel FK
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External photoacoustic detection of a trace vapor inside a multimode laser.
    Latz TJ; Weirauch G; Baev VM; Toschek PE
    Appl Opt; 1999 Apr; 38(12):2625-9. PubMed ID: 18319836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracavity CO laser photoacoustic trace gas detection: cyclic CH(4), H(2)O and CO(2) emission by cockroaches and scarab beetles.
    Bijnen FG; Harren FJ; Hackstein JH; Reuss J
    Appl Opt; 1996 Sep; 35(27):5357-68. PubMed ID: 21127531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracavity absorption with a continuous wave dye laser: quantification for a narrowband absorber.
    Brobst WD; Allen JE
    Appl Opt; 1987 Sep; 26(17):3663-70. PubMed ID: 20490120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter.
    Zhang H; Lu Y; Duan L; Zhao Z; Shi W; Yao J
    Opt Express; 2014 Oct; 22(20):24545-50. PubMed ID: 25322029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicomponent trace-gas analysis by three intracavity photoacoustic cells in a CO laser: observation of anaerobic and postanaerobic emission of acetaldehyde and ethanol in cherry tomatoes.
    Bijnen FG; Zuckermann H; Harren FJ; Reuss J
    Appl Opt; 1998 May; 37(15):3345-53. PubMed ID: 18273294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracavity absorption spectroscopy with a turbulent detuned actively mode-locked Ti:sapphire laser.
    Pique JP
    Opt Express; 2013 Jun; 21(11):13272-8. PubMed ID: 23736580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoacoustic recovery of an absolute optical absorption coefficient with an exact solution of a wave equation.
    Wang Y; Wang R
    Phys Med Biol; 2008 Nov; 53(21):6167-77. PubMed ID: 18854608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of atomic oxygen by intracavity spectroscopy.
    Harris SJ; Weiner AM
    Opt Lett; 1981 Mar; 6(3):142-4. PubMed ID: 19701355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracavity laser absorption measurements at ultrahigh spectral resolution.
    Kachanov AA; Stoeckel F; Charvat AS; O'Brien JJ
    Appl Opt; 1997 Jun; 36(18):4062-8. PubMed ID: 18253427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High finesse optical cavity coupled with a quartz-enhanced photoacoustic spectroscopic sensor.
    Patimisco P; Borri S; Galli I; Mazzotti D; Giusfredi G; Akikusa N; Yamanishi M; Scamarcio G; De Natale P; Spagnolo V
    Analyst; 2015 Feb; 140(3):736-43. PubMed ID: 25465410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative detection of atomic absorption by intracavity dye-laser quenching.
    Maeda M; Ishitsuka F; Matsumoto M; Miyazoe Y
    Appl Opt; 1977 Feb; 16(2):403-6. PubMed ID: 20168500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discharge-flow kinetics measurements using intracavity laser absorption spectroscopy.
    Sheehy P; Steinfeld JI
    J Phys Chem B; 2005 May; 109(17):8358-62. PubMed ID: 16851980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.
    Li X; Jiang H
    Phys Med Biol; 2013 Feb; 58(4):999-1011. PubMed ID: 23339968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time, ultralow concentration detection of analytes in solution by infrared intracavity laser absorption.
    Elejalde U; Girkin JM
    Appl Opt; 2007 Jul; 46(19):3995-9. PubMed ID: 17571137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracavity laser spectroscopy: propagation of absorption data through optical fibers.
    O'Brien JJ; Torruellas W; Goldstein N; Atkinson GH
    Appl Opt; 1987 Nov; 26(21):4563-9. PubMed ID: 20523403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time in situ measurements of atmospheric optical absorption in the visible via photoacoustic spectroscopy. 1: Evaluation of photoacoustic cells.
    Adams KM
    Appl Opt; 1988 Oct; 27(19):4052-6. PubMed ID: 20539513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser.
    Langer G; Bouchal KD; GrĂ¼n H; Burgholzer P; Berer T
    Opt Express; 2013 Sep; 21(19):22410-22. PubMed ID: 24104130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.
    Pulkkinen A; Cox BT; Arridge SR; Goh H; Kaipio JP; Tarvainen T
    IEEE Trans Med Imaging; 2016 Nov; 35(11):2497-2508. PubMed ID: 27323361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.