BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1820034)

  • 21. Structure-activity correlation in serine-protease catalyzed peptide synthesis based on modeled intermediates.
    Dutler H; Bizzozero SA; Benz P; Zbinden P
    Biomed Biochim Acta; 1991; 50(10-11):S149-54. PubMed ID: 1820037
    [No Abstract]   [Full Text] [Related]  

  • 22. Solid-phase peptide synthesis using acetonitrile as a solvent in combination with PEG-based resins.
    Acosta GA; del Fresno M; Paradis-Bas M; Rigau-DeLlobet M; Côté S; Royo M; Albericio F
    J Pept Sci; 2009 Oct; 15(10):629-33. PubMed ID: 19634177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cobalt(III)-ligated peptides as acyl acceptors in peptide synthesis catalyzed by chymotrypsin.
    Andreasen MF; Bagger S; Sørensen AM; Wagner K
    J Inorg Biochem; 1995 Mar; 57(4):271-8. PubMed ID: 7775980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solvent selection for solid-to-solid synthesis.
    Ulijn RV; De Martin L; Gardossi L; Janssen AE; Moore BD; Halling PJ
    Biotechnol Bioeng; 2002 Dec; 80(5):509-15. PubMed ID: 12355461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptide and ester synthesis in organic solvents catalyzed by seryl proteases linked to alumina.
    Pugnière M; Skalli A; Coletti-Previero MA; Previero A
    Proteins; 1986 Oct; 1(2):134-8. PubMed ID: 3482466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide synthesis in organic solvents with an immobilized enzyme.
    Nakanisi K; Nagayasu T
    Biomed Biochim Acta; 1991; 50(10-11):S50-4. PubMed ID: 1820060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide synthesis by proteases in organic solvents: medium effect on substrate specificity.
    Nagashima T; Watanabe A; Kise H
    Enzyme Microb Technol; 1992 Oct; 14(10):842-7. PubMed ID: 1368970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible switching of substrate activity of poly-N-isopropylacrylamide peptide conjugates.
    Molawi K; Studer A
    Chem Commun (Camb); 2007 Dec; (48):5173-5. PubMed ID: 18060132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of several types of substrates to ficin-catalyzed peptide synthesis.
    Sekizaki H; Toyota E; Fuchise T; Zhou S; Noguchi Y; Horita K
    Amino Acids; 2008 Jan; 34(1):149-53. PubMed ID: 17619121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent.
    Deschrevel B; Vincent JC; Ripoll C; Thellier M
    Biotechnol Bioeng; 2003 Jan; 81(2):167-77. PubMed ID: 12451553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of water miscible organic solvents on orange flavedo peptide amidase.
    Steinke D; Kula MR
    Biomed Biochim Acta; 1991; 50(10-11):S143-8. PubMed ID: 1820036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pepsin-catalyzed peptide synthesis in biphasic systems.
    Bemquerer MP; Theobaldo FC; Tominaga M
    Biomed Biochim Acta; 1991; 50(10-11):S94-7. PubMed ID: 1820069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gram-scale enzymatic synthesis of a peptide bond.
    Deschrevel B; Dugast JY; Vincent JC
    C R Acad Sci III; 1992; 314(11):519-25. PubMed ID: 1521172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparative-scale enzyme-catalyzed peptide synthesis using solubilizing N-terminal protecting groups.
    Fischer A; Schwarz A; Wandrey C; Bommarius AS; Knaup G; Drauz K
    Biomed Biochim Acta; 1991; 50(10-11):S169-74. PubMed ID: 1840289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organic solvent changes the chymotrypsin specificity with respect to nucleophiles.
    Gololobov MYu ; Voyushina TL; Stepanov VM; Adlercreutz P
    FEBS Lett; 1992 Aug; 307(3):309-12. PubMed ID: 1644186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solid-phase peptide synthesis using nanoparticulate amino acids in water.
    Hojo K; Ichikawa H; Maeda M; Kida S; Fukumori Y; Kawasaki K
    J Pept Sci; 2007 Jul; 13(7):493-7. PubMed ID: 17554805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic peptide synthesis in frozen aqueous systems: influence of modified reaction conditions on the peptide yield.
    Gerisch S; Ullmann G; Stubenrauch K; Jakubke HD
    Biol Chem Hoppe Seyler; 1994 Dec; 375(12):825-8. PubMed ID: 7710698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective catalysis with peptide dendrimers.
    Douat-Casassus C; Darbre T; Reymond JL
    J Am Chem Soc; 2004 Jun; 126(25):7817-26. PubMed ID: 15212529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Penicillin acylase-catalyzed acyl group transfer to amino acids, their esters and peptides: a kinetic study.
    Didziapetris RJ; Svedas VK
    Biomed Biochim Acta; 1991; 50(10-11):S237-42. PubMed ID: 1820052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.